
Wednesday, July 16, 2008

Problem 1. An acute-angled triangle ABC has orthocentre H. The circle passing through H with
centre the midpoint of BC intersects the line BC at A1 and A2. Similarly, the circle passing through
H with centre the midpoint of CA intersects the line CA at B1 and B2, and the circle passing through
H with centre the midpoint of AB intersects the line AB at C1 and C2. Show that A1, A2, B1, B2,
C1, C2 lie on a circle.

Problem 2. (a) Prove that
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for all real numbers x, y, z, each different from 1, and satisfying xyz = 1.

(b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each
different from 1, and satisfying xyz = 1.

Problem 3. Prove that there exist infinitely many positive integers n such that n2 +1 has a prime
divisor which is greater than 2n +

√
2n.
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