Language: **English** Day: 1 ## 49th INTERNATIONAL MATHEMATICAL OLYMPIAD MADRID (SPAIN), JULY 10-22, 2008 Wednesday, July 16, 2008 **Problem 1.** An acute-angled triangle ABC has orthocentre H. The circle passing through H with centre the midpoint of BC intersects the line BC at A_1 and A_2 . Similarly, the circle passing through H with centre the midpoint of CA intersects the line CA at B_1 and B_2 , and the circle passing through H with centre the midpoint of AB intersects the line AB at C_1 and C_2 . Show that A_1 , A_2 , B_1 , B_2 , C_1 , C_2 lie on a circle. **Problem 2.** (a) Prove that $$\frac{x^2}{(x-1)^2} + \frac{y^2}{(y-1)^2} + \frac{z^2}{(z-1)^2} \ge 1$$ for all real numbers x, y, z, each different from 1, and satisfying xyz = 1. (b) Prove that equality holds above for infinitely many triples of rational numbers x, y, z, each different from 1, and satisfying xyz = 1. **Problem 3.** Prove that there exist infinitely many positive integers n such that $n^2 + 1$ has a prime divisor which is greater than $2n + \sqrt{2n}$. Language: English Time: 4 hours and 30 minutes Each problem is worth 7 points