46th International Mathematical Olympiad

First Day

Merida, Mexico, Wednesday 13 July 2005

Language: English

Problem 1. Six points are chosen on the sides of an equilateral triangle ABC: A_1, A_2 on BC; B_1, B_2 on CA; C_1, C_2 on AB. These points are the vertices of a convex hexagon $A_1A_2B_1B_2C_1C_2$ with equal side lengths. Prove that the lines A_1B_2 , B_1C_2 and C_1A_2 are concurrent.

Problem 2. Let a_1, a_2, \ldots be a sequence of integers with infinitely many positive terms and infinitely many negative terms. Suppose that for each positive integer n, the numbers a_1, a_2, \ldots, a_n leave n different remainders on division by n. Prove that each integer occurs exactly once in the sequence.

Problem 3. Let x, y and z be positive real numbers such that $xyz \ge 1$. Prove that

$$\frac{x^5-x^2}{x^5+y^2+z^2}+\frac{y^5-y^2}{y^5+z^2+x^2}+\frac{z^5-z^2}{z^5+x^2+y^2}\geq 0.$$

Time allowed: 4 hours 30 minutes

Each problem is worth 7 points