CWMI 2017

Day 1

- 1. Let p be a prime and n be a positive integer such that p^2 divides $\prod_{k=1}^{n} (k^2 + 1)$. Show that p < 2n.
- 2. Let n be a positive integer such that there exist positive integers x_1, x_2, \ldots, x_n satisfying

$$x_1x_2\cdots x_n(x_1+x_2+\cdots+x_n)=100n.$$

Find the greatest possible value of n.

- 3. In triangle ABC, let D be a point on BC. Let I_1 and I_2 be the incenters of triangles ABD and ACD respectively. Let O_1 and O_2 be the circumcenters of triangles AI_1D and AI_2D respectively. Let lines I_1O_2 and I_2O_1 meet at P. Show that $PD \perp BC$.
- 4. Let n and k be given integers such that $n \ge k \ge 2$. Alice and Bob play a game on an n by n table with white cells. They take turns to pick a white cell and color it black. Alice moves first. The game ends as soon as there is at least one black cell in every k by k square after a player moves, who is declared the winner of the game. Who has the winning strategy?

Day 2

- 5. Let a_1, a_2, \dots, a_9 be 9 positive integers (not necessarily distinct) satisfying: for all $1 \le i < j < k \le 9$, there exists $l(1 \le l \le 9)$ distinct from i, j and j such that $a_i + a_j + a_k + a_l = 100$. Find the number of 9-tuples (a_1, a_2, \dots, a_9) satisfying the above conditions.
- 6. In acute triangle ABC, let D and E be points on sides AB and AC respectively. Let segments BE and DC meet at point H. Let M and N be the midpoints of segments BD and CE respectively. Show that H is the orthocenter of triangle AMN if and only if B, C, E, D are concyclic and $BE \perp CD$.
- 7. Let $n=2^{\alpha}\cdot q$ be a positive integer, where α is a nonnegative integer and q is an odd number. Show that for any positive integer m, the number of integer solutions to the equation $x_1^2+x_2^2+\cdots+x_n^2=m$ is divisible by $2^{\alpha+1}$.
- 8. Let $a_1, a_2, \dots, a_n > 0 \ (n \ge 2)$. Prove that

$$\sum_{i=1}^{n} \max\{a_1, a_2, \cdots, a_i\} \cdot \min\{a_i, a_{i+1}, \cdots, a_n\} \le \frac{n}{2\sqrt{n-1}} \sum_{i=1}^{n} a_i^2.$$