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Abstract

Conway’s Game of Life is a cellular automaton devised by the British mathematician John Conway. 
As the original Game of Life is based on a plane of tessellated squares and lacks analysis on other 
tessellations, this project aimed to investigate a variation of the Life using hexagonal tessellation and 
hence determine the fractal patterns in chaotic growth. Through writing computer programs and running 
simulations for both the original Game of Life and the Hex Life, the best set of rules was derived to 
ensure continuous growth of the Hex Life. Both the original Game of Life and the Hex Life were also 
proven to be fractals mathematically, with self-similar patterns.

Introduction

Conway’s Game of Life is a cellular automaton devised by the British mathematician John Horton 
Conway in 1970. The evolution of the game is determined by its initial position. 

The universe of the Game of Life is an infinite two-dimensional orthogonal grid of square cells, each of 
which is either alive or dead. Every cell reacts with the 8 surrounding cells, or the Moore Neighborhood, 
as shown in figure 1. 
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Figure 1: The Moore Neighborhood consists of the 8 surrounding cells

Before going on to the rules of the game, our group would like to introduce the set of notation that we 
have used in the following figures. Firstly, a live cell is represented by a black cell, while a dead cell is 
represented by a white cell. Next, the numbers within each cell represents the number of life cells in the 
Moore Neighborhood.
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The rules of the game are that:
1. Any live cells with fewer than two live neighbors dies by under-population, as shown in figure 2. 

Figure 2: The given example ignores all other rules

2. Any live cells with two or three live neighbors lives on to the next generation.  
 As shown in figure 3

Figure 3: The given example ignores all other rules

Any live cell with more than three live neighbors dies by overcrowding

Figure 4: The given example ignores all other rules

3.  Any dead cell with exactly three live neighbors becomes a live cell by reproduction.

Figure 5: The given example ignores all other rules

Conway’s Game of Life
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These rules would be applied in each generation until the cells die out, or becomes stable. Stable life 
comprises of two different components. Firstly, an oscillator is a pattern that returns to its original state 
in the same orientation and position after a finite number of generations. Oscillators have different 
degrees of oscillation. An oscillator with x degree of oscillation will require x number of generations 
before returning to its original state. The following figures are examples of oscillators.

Figure 6: The above is an oscillator with 1 degree of oscillation

Figure 7: The above is an oscillator with 2 degrees of oscillation. It is also commonly known as “blinker”

Next, spaceships are patterns that reappear after a certain number of generations in the same orientation 
but in a different position, as shown in figure 8.

Figure 8: This spaceship is often known as the “glider”

Conway’s Game of Life
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Conway’s Game of Life is mainly focused around square tessellations, perhaps because Conway felt that 
other tessellations of shapes would not be able to sustain life as there are too little neighboring cells to 
interact with. Therefore, our group wants to experiment with hexagonal tessellations.
One of the prerequisites for Conway’s Game of Life is that the game must satisfy class 4 complexity. As 
mentioned by Ilachinski (2001), in class 4 complexity, nearly all initial patterns evolve into structures 
that interact in complex ways, with formation of local structures that are able to survive for many 
generations. With this in mind, our project seeks to identify a rule for Hexagonal-Life, such that class 4 
complexity can be achieved.

Terminology

• Hex-Life: Revised Game of Life in Hexagonal Tessellation.
• Moore Neighborhood: The number of cells that surround a central cell. (In the conventional  
 Conway’s game of life, each cell has 8 neighboring cells, whereas in Hex-Life, each cell only has  
 6 cells.)
• Bx: x represents the number of cells required in the Moore Neighborhood that will result in birth  
 of the central cell. For example, in the original Game of Life, we have B3, meaning that birth will  
 occur when there are exactly 3 cells.
• Syz: y and z represent the number of cells required in the Moore Neighborhood that will result in  
 survival of the central cell. For example, in the original Game of Life, we have S23, meaning that  
 a live cell will survive when there are 2 or 3 cells.
• First-Order Neighbors: The cells directly adjacent to a central cell.
• Second-Order Neighbors: The cells that are adjacent to two First-Order Neighbors.
• Bounding Box: The smallest rectangle that can cover all alive cells (in the Original Game of Life)  
 or the smallest parallelogram that can cover all alive cells (in Hex-Life).

Literature Review

Bays (1987) attempted to generalize Conway’s Game of Life into 3 dimensions. His work helped to give 
us insight on possibilities to expand Conway’s Game of Life, and also helped us to identify what should 
be done in our research. The largest flaw in Bays’ work is the lack of connection between his works 
and that of Conway’s. There was no cross referencing between his work and Conway’s work. Due to 
the large number of possibilities of rule sets that Conway’s Game of Life can have, our group found it 
important that we use the original Game of Life as a benchmark for our own rule-set in Hex-Life. 

Apart from Bays’ paper, a program entitled “Hexlife” was also found online. Since there are only 6 cells 
surrounding each cell, the program tries to compensate for this by extending the neighbourhood to those 
which are touching two of the adjacent cells, as shown in the rules page of the site. Trying to compensate 
for exponential growth, which would result if one weighed all those cells equally and used a simple 
rule, David G. Ballinger gave the immediately adjacent cells ( “first-order neighbours”) a weight of 1, 
and the other cells which are counted (“second-order neighbours”) that of 0.3, so the total count is 9.8, 
close to 10. By accounting for differences in the two versions of Life, the creator of Hex-Life came up 
with the range for a cell surviving and being born, 2.0 to 3.3 and 2.6 to 3.3 respectively.  However, our 
group feels that the “second-order neighbors” is unnecessary. Our group believes that hexagonal life 
can reach class 4 complexity without considering 12 cells, but the 6 cells in the Moore Neighborhood.  

Conway’s Game of Life
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Research Questions

1. By comparing number of live cells and bounding box of the expansion after 20 generations, we aim  
 to find the situation of Hex-Life that is closest to Conway’s Game of Life and therefore, deduce the  
 best set of rules to ensure continuous growth.

2. We would also like to investigate fractal properties in Hex-life using the Minkowski-Bouligand  
 dimension. 

RESEARCH PROBLEM I

Proposed Methodology

1. Write a simple program to help make the simulations easier. 
2. Record down the bounding box and number of life cells in all possible permutations of cells in a 5  
 by 5 box in the actual Conway’s Game of Life after 20 generations. 
3. Record down the bounding box and number of life cells in all possible permutation of cells in a  
 “honeycomb” like grid (7 cells) using different rules of Hex-Life after 20 generations.
4. Using Excel, compare and find the hex-life rule that is closest to the actual Conway’s Game of Life.

Results

We determined the live cells and bounding box by finding the ratio of the two terms after 20 generations. 
The initial conditions when running simulations for the original Game of Life would be all polyminos 
within a square with length and breadth of 3 units, whereas, the initial conditions used in testing for 
Hex-Life would be all the polyminos within a hexagon with 7 units. The bounding box is the smallest 
square and the smallest parallelogram that can cover all the live cells in Conway’s Game of Life and 
Hex-Life respectively.

Number of cells needed for Birth in Hex-life Similarity to Conway’s Game of Life 

B1 The birth rate is too high, resulting in exponential 
growth 

B2 The results are slightly deviated with the original 
Game of Life 

B3 The birth rate is too low, and most of the patterns 
die out.

B4 The birth rate is too low, and most of the patterns 
die out.

B5 The birth rate too low and almost all initial 
conditions die out immediately.

B6 The birth rate too low almost all initial  
conditions die out immediately. 

Conway’s Game of Life
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The following figures are a scatter plot of the results from B1 and B2. 

Figure 9: The above graph is the scatter plot for B1

Figure 10: The above graph is the scatter plot for B2

After running tests on the original Conway’s Game of Life, the expected live cells is 27.77% of the 
smallest square that can contain all the cells. The total amount of live cells in the bounding box is 1874 
live cells in a bounding box of 6749 cells. Amongst all the rule-sets that we have tested, the rule-set 
B2S12, meaning that any dead cell will live if there are 2 neighboring cells, and each live cell will 
remain alive when there are 1 or 2 live cells provided us with a bounding-box to live cell ratio of 28.04, 
only 0.27 more than the original Game of Life.

B2S12 in Hex-life Conway’s Game of Life
28.04 27.77

Program Logic

In the program, each cell is represented by a 2-dimensional array, with the x-coordinate and the 
y-coordinate, as shown in figure 11. Each cell is assigned the values 0 or 1, with 0 representing a dead 
cell and 1 representing a live cell. Upon assigning an initial condition, the program will check all the 
surrounding cells to determine the position of the next central cell.

Conway’s Game of Life



Mathematical Medley • Volume 40 No. 2 December 2014 17

1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1

1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2

1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3

1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4

Figure 11: Data values for each cell in the original Game of Life

The concept in Hex-Life is very similar, except, every other row of cells is shifted ½ a cell to the right.

1,1 2,1 3,1 4,1 5,1

2,2 3,2 4,2 5,2

1,3 2,3 3,3 4,3 5,3

2,4 3,4 4,4 5,4

Figure 12: Data values for each cell in Hex-Life

Fractal Dimension in Hex-Life

Upon running many simulations for Hex-Life, we discovered that the Game of Life may contain fractal-
like properties. There is a certain level of self-similarity in the expansions, with repeated clusters of cells 
in certain areas. As such, our group decided to try and investigate the possibility that Hex-Life could 
result in fractals.

Figure 13: Small congregations of hexagon-like structures can be seen.  
This self-similarity is characteristic of a fractal.

Conway’s Game of Life
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RESEARCH PROBLEM II

Proposed Methodology

1. Research on the Hausdorff-Besicovitch Dimension in determining fractals.
2. Research on the Minkowski-Bouligand Dimension in determining fractals. 
3. Evaluate between the methods.
4. Rewrite the program to calculate the possibility of fractal growth in chaotic growth.
5. Using Excel to evaluate and compile the results.

Definition of A Fractal

A fractal can be defined in terms of the Hausdorff-Besicovitch dimension or the Minkowski-Bouligand 
dimension. A set is called a fractal if its Hausdorff-Besicovitch dimension strictly exceeds the topological 
dimension. Due to the complexity of the Hausdorff dimension, our group decided to use the Minkowski-
Bouligand dimension instead. 
The Minkowski-Bouligand dimension is given by 

where MƐ represents mass and Ɛ represents scale. More precisely, given a pattern, any fixed unit shape 
with side Ɛ is tessellated across. The mass MƐ is the number of non-empty units. In any set, when the 
value of the Minkowski-Bouligand Dimension is non-integer, the pattern would be classified as a fractal. 

Figure 14: Estimation of the Minkowski-Bouligand dimension of the coast of Great Britain

(Source: http://en.wikipedia.org/wiki/Minkowski%E2%80%93Bouligand_dimension)

Conway’s Game of Life
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Results

Upon running the program for 1 billion generations, with 262144 cells and the initial condition of 10% 
randomly filled cells, our group came up with the fractal dimensions for both the original game of life 
and Hex-Life (B1S12 based on research problem 1). 

The original game of life has a fractal dimension of 1.6622, while Hex-Life has a fractal dimension of 
1.6625, meaning that they are mathematically fractals.

Our group also decided to extend the investigation of fractal dimension to other possible rule-sets of 
Hex-Life. Based on research problem 1, our group came up with 16 other rule-sets that deviated least 
from the original Game of Life.

Rule Set Deviation Fractal Dimension

B1S23 2.8 1.6639

B1S235 2.52 1.6621

B1S236 2.8 1.6637

B1S1256 2.89 1.6621

B1S2356 2.52 1.6631

B2S14 1.5 1.6639

B2S15 2.4 1.6622

B2S26 1.73 1.6643

B2S125 2.55 1.6619

B2S126 1.35 1.6627

B2S136 2.75 1.6639

B2S145 2.66 1.6625

B2S146 1.79 1.6634

B2S156 2.46 1.6635

B2S1356 2.17 1.6629

B2S1456 0.5 1.6623

All of the values for fractal dimension given by these rule-sets have a difference of at most 0.003, 
showing us that fractal properties do indeed exist in Hex-Life.

Conway’s Game of Life
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Figure 15: The above scatter plot is the fractal dimension of the chosen rule-sets

Conclusions

In summary, we found that the rule-set B2S12 is closest to the original Game of Life. We also discovered 
that Hex-Life will generate fractal-like patterns. 
However, our project has some limitations, mainly
1. Sample Statistics is too small. Due to the lack of computational power, our group had to limit the  
 sample size to a 5 by 5 box for the original Game of Life and a 7 cell honeycomb for Hex-Life.
2. The difference in some rule-sets are very small, therefore, the determining of the most ideal rule-set  
 can be difficult
3. The initial position of the program was chosen randomly, meaning that the results may vary.
4. The size of the simulation was limited. After 1 billion generations, the growth of the cells will  
 definitely have exceeded the limit that our program can hold. Therefore, the statistics that we have  
 obtained is only a small portion of the actual position of the cells.
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A folded square sangaku problem

Hiroshi Okumura

1 A sangaku problem

In Edo era, there was a unique mathematical custom in Japan. When people found nice problems, they

wrote their problems on a framed wooden board, which was dedicated to a shrine or a temple. The

board is called a sangaku (san (Z) means mathematics and gaku (z) means framed board). It was also

a mean to publish a discovery or to propose a problem. Most such problems were geometric and the

figure were beautifully drawn in color (see the cover page). The uniqueness is not only the custom, but

also the contents of the problems. Ordinary triangle geometry mainly concerns the properties of “one”

triangle. On the contrary, sangaku problems concern about some relationship arising from a number of

mixed elementary figures like circles, triangles, squares etc. For some nice examples of sangaku problems,

see [3]. In this article, we consider a popular folded square problem (see Figure 1).

Problem. If a piece of square paper ABCD is folded so that the corner D coincides with a point D′ on

the segment BC and the segment AD is carried into A′D′, which intersects AB at E, then the inradius

of the triangle BD′E equals |A′E|.

a
b

c

ka

a

ma

A B

CD

D′

EF

A′

G

Figure 1: A sangaku problem

The figure has several interesting properties [1], [2] and [4]. Indeed six problems were proposed from

this figure in [1]. Also it was used in the front cover of the journal on which [4] appeared. In this article

we give one more property of the circumcircle of the same triangle, which seems to be new.

Solution. Let the crease intersect AB at F and a = |A′E|, b = |A′F |, c = |EF | and |BE| = ka for

a real number k. Since the triangles A′EF and BED′ are similar, |D′E| = kc. From |AB| = |A′D′|, we
get b+ c+ ka = a+ kc. Therefore

k =
a− b− c

a− c
=

(a− b− c)(a+ c)

a2 − c2
=

−b(a+ c)− b2

−b2
=

a+ b+ c

b
. (1)
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