Singapore International Mathematical
Olympiad Committee

2014 National Team Selection Test

Day 1

Time allowed: 4 hours

1. Let Z* be the set of positive integers. Find all functions f : Z* — Z* such that
m? + f(n) | mf(m) +n

for all positive integers m and n.

Soln. The answer is f(n) = n. Setting m = n = 2 tells us that 4 + f(2) | 2f(2) + 2.
Since 2f(2) +2 < 2(4 + f(2)), we must have 2f(2) +2 =4+ f(2), so f(2) = 2. Plugging
in m = 2 then tells us that 4 + f(n) | 4 + n, which implies that f(n) < n for all n.

Setting m = n gives n? + f(n) | nf(n) +n, so nf(n)+n > n?+ f(n) which we rewrite
as (n — 1)(f(n) —n) > 0. Therefore f(n) > n for all n > 2. This is trivially true for
n =1 also. It follows that f(n) = n for all n. This function obviously satisfies the desired

property.

2. In a mathematical competition, there are 4 multiple-choice questions and each question
has 3 choices. Among any group of 3 contestants, there is at least 1 question such that all
3 contestants give a different answer. Determine the maximum number of contestants.

Soln. Let f(n) denote the maximum number of contestants satisfying the above conditions
where there are n questions. We have f(1) = 3. If 3 persons give different answer to any
one question, then this question can be used to satisfy the given conditions for this group
of 3 persons. Using the pigeonhole principle on the first question, there is one particular
answer that will be selected by at most |f(n)/3] number of contestants. This means
that the remaining f(n) — | f(n)/3] only choose the other 2 answers. So any group of 3
persons from the remaining f(n) — | f(n)/3] cannot use the first question to satisfy the
given conditions. The question that is answered differently by all 3 contestants must come
from one of the remaining n — 1 questions. Hence f(n —1) > f(n) — [ f(n)/3] > 2f(n)/3.
Thus, f(2) <4, f(3) <6 and f(4) <9.

There can be 9 contestants from the following configuration.

A B C
Q1:{1,2,3},{4,5,6},{7,8,9}
Q2:{1,4,7},{2,6,8},{3,5,9}
Q3 {1,5,8},{2,4,9},{3,6,7}
Q4:{1,6,9},{2,5,7},{3,4,8}

—

= W
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3. In an acute triangle ABC, AC > AB, E, F are points on AC, AB respectively such
that BE, C'F bisect £B, ZC respectively. Points P and @ are on the minor arc AC of
the circumcircle of the triangle ABC such that AC is parallel to PQ and B(Q is parallel
to FE . Show that PA+ PB = PC.

Soln.

Since AC is parallel to PQ, ACQP is an isosceles trapezium so that AP = CQ. Thus
/ABP = /CBQ so that ZABQ = ZPBC. 1t follows that JAFE = /PBC. Since
/BAC = /ZBPC, we have the triangles AFE and PBC are similar. Let BC = a,
AC = b and AB = c. By angle bisector theorem, AE = -2 and AF = -2, It follows

a+e a+b"
that % = % = %_‘;—g We are to show PA + PB = PC'. Hence, it suffices to show that
PA+PB = PB-%% or PA = PB-%2<. Ptolemy’s theorem implies a- PA+c-PC = b-PB.

Hence, a- PA+ %2 .c. PB = b- PB, which gives a- PA = (b— %2 .¢). PB =a- %< PB.
This completes the proof.

Second solution. Let Z/QBC = /PBA = /PCA = #, and let the circumradius of
the triangle ABC be R. Then PA = 2Rsin6, PB = 2Rsin(C+#6) and PC = 2R sin(B—0).
Thus it suffices to verify that sinf + sin(C' + 0) = sin(B — ). Let E'F intersect BC at
M. Then AM is the external angle bisector of ZA. Direct calculation using angle bisector
theorem give CE = ab/(a + ¢), MC = ab/(b — ¢), AE = be/(a + ¢), AF = be/(a + b).
Using sine rule on the triangles MCFE and AFE, we obtain sinf/sin(C+6) = CE/MC =
(b—c)/(a+ c), and sin(B — 0)/sin(C + 0) = AE/AF = (a + b)/(a + ¢). Consequently,
sin@+sin(C+0) = [(b—c)/(a+c)+1]sin(C+0) = [(a+b)/(a+c)]sin(C +6) = sin(B —0).
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4. Prove that if m > 1, and C is a subset of {0,1,...,m} such that
012 2 +1,
2
then some power of 2 is either an element of C' or the sum of two distinct elements of C.

Soln. The proof is by induction on m. It is easy to check that the result is true for
m=1,2,3,4. Let m > 4 and assume that the result holds for all integers m’ < m. Choose
s > 2 such that
2° <m < 25t

Let r = m — 2% and

C’'=cn{0,...,2°—r—1}
and

C"=Cn{2°—r,...,2° +r}.

Then C is the disjoint union of C’ and C”, and
ICl=C"| +1C”].

Suppose the result is false for C. Then |C| > m/2 + 1, but no power of 2 either belongs
to C or is the sum of two distinct elements of C. It follows that 2° ¢ C” and for each
i =1,...,7, the set C” contains at most one of the two integers 2° — i, 2% + i. Therefore,

|c”| <.
If m =25+t — 1, then r = 2° — 1 and C’ C {0}; thus
IC'| < 1.

It follows that +1
%+1§|C|§l+r=2s=mT,

which is impossible.

Similarly, if 25 <m < 2571 — 1, then 0 <r <2*—1and m’ =2% —r —1 > 1. Since
the set C' contains C’, it follows that no power of 2 either belongs to C” or is the sum of
distinct elements of C’. By the induction hypothesis, we have

! L]
,o.m 25 —r—1
—+l=—+1
|IC’| < 5 T 5 +1,
and so 9 1 +1
%4-15|C|:|C’|+|C”|<++1+r:m7,

which is also impossible.

Remark: The source of this problem is the book: Additive Number Theory: Inverse
Problems and the Geometry of Sumsets (pp 31-33). This is actually a lemma used to prove
the following result: If S C {1,...,n} and [S| > %, then it is possible to select at most
four, not necessarily distinct elements from S, whose sum is a power of 2.
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Day 2
Time allowed: 4.5 hours
5. Let CD be a diameter of a circle w centered at O. Points A and B on w are on
opposite sides of the line C'D such that the tangent to w at C' intersects the line AB at P.
The lines DB and OP intersect at E. Prove that ZACE = 90°.

Soln.

P

Solution 1. Let C'E intersect w at F'. It suffices to show that A, O, F are collinear.
Consider the hexagon ABDCCF, we have AB intersects the tangent at C' at the point P,
BD intersects CF at E and DC intersects FFA at O'. By Pascal’s theorem, P, E, O are
collinear. This implies O’ = O so that A, O, F are collinear.

Solution 2. Let w be the circle 2 + y?> = 1. Let A = (a1,a2) and B = (by, bo),
where a? +a% = 1 and b? + b2 = 1. Then P = (“2”1_:;5’_2;2“1"'5‘ ,—1). Using the relation

2 2 _ : — (ai1bz—aszbyta;—b; az—bs
bi + b3 = 1, we obtain F = ( A =) Thus

CE = a1by —azby +a; — by ag — by
aiby + asby — 1 ' a1by + asby — 1

) and CA = (aj,as+1).

It follows that CF - CA = +a-U(tba) _ o That is LACE = 90°.

6. Prove that in any set S of 2000 distinct real numbers there exist two distinct pairs
(a,b), (¢,d) so that
1

100000

a—b_
c—d

1)<

Soln. Let D; < Dy < --- < D,, be the distances between them, displayed with their
multiplicities. Hence m = 1000 - 1999. By rescaling, we may assume that Dy =1=x2 —y
where z,y € S. Evidently, D,,, = v — u where v is the largest and u the smallest number

in S.
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If Diy1/D; <1410 for some i = 1,2,...,m— 1, then the required inequality holds
because 0 < Dg‘fl —1 < 107°. Thus we may assume that

Dit1/D; >1+4107° foralli=1,2,...,m— 1.

Therefore

v—u=2D

D, D, D3 Dy ( 1 \m-1
m = — = cee— > (14 —
Dy Dy, * 105)

From m—1 = 1000-1999—1 > 19-10° and the fact that for n > 1, (1+2)" > 1+ (})
we get

=2,

1
n

i 19
1 \19-10° 1\ 10°
(HW) = ((”ﬁ) ) > 219 = 29210 > 500 - 1000 > 2 - 10°,
and so v —u = D,, > 2-10°.

Thus either
(i) v—2>10° or(ii) z—u>10°

In case (i), we have v > = > y. The result holds with a =v, b=y, c=v and d = z.

In case (ii), we have x > y > u. The result holds with a =y, b=1u, ¢ =z and d = w.

7. Let n be a positive integer and consider a sequence aq, as, ..., a, of positive integers.
Extend it periodically to an infinite sequence so that a,4; = a; for all ¢« > 1. If

ap<ax<---<ap<art+n
and
g, <n+i—1 fori=1,2,...,n,

prove that
ay +az + -+ an, <0’

Soln. In the coordinate plane draw the bar chart where in column i, there is bar of height
a;. Let the configuration obtained be P. Reflect P about the line x = y and then translate
to the left by n. Call the image Q. We claim that P and ) do not intersect.

Suppose on the contrary that P and @ intersect in a cell (4, j).

If a; < n, then j = a; and thus a,, > n + i. But this gives a contradiction as
g, <n+i—1

If a; > n+ 1, then j = n as column i certainly intersects row n. Thus a, > n + i.
From a,, < ay +n, we get a; > i. Thusa,, > a; >n+1. Buta,, <n+1—-1=n and we
have a contradiction.

Consider the n x n square S in the first quadrant. The portion of P that is outside S
is congruent to the portion of @ inside S. Thus the area of P which is ) a; < n2.
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Day 3
Time allowed: 4.5 hours
8. Let ABC be a triangle with ZB > ZC. Let P and @ be two different points on line
AC such that ZPBA = ZQBA = ZACB and A is located between P and C. Suppose

that there exists an interior point D of the segment B(Q for which PD = PB. Let the ray
AD intersect the circle ABC at R # A. Prove that QB = QR.

Soln.

Denote by w the circumcircle of the triangle ABC, and let ZACB = ~. Note that the
condition v < ZCBA implies that v < 90°. Since ZPBA = =, the line PB is tangent to
w, so PA-PC = PB? = PD?. By PA/PD = PD/PC, the triangle PAD and PDC are
similar, and ZADP = ZDCP.

Next, since ZABQ = ZACB, the triangles ABC and AQB are also similar. Then
LAQB = LZABC = ZARC, which means that the points D, R, C, and @ are concyclic.
Therefore Z/DRQ = ZDCQ = LADP.

Now from ZARB = ZACB =~ and Z/PDB = /ZPBD = 2v, we get

ZQBR =/ZADB — ZARB = ZADP + ZPDB — ZARB = ZDRQ + v = ZQRB, so
the triangle QRB is isosceles, which yields QB = QR.

9. Find an explicit formula for the least number f(n) of distinct points in the plane such
that for each £ = 1,2,...,n, there exists a straight line containing exactly k£ of these
points.

Soln. Suppose there is a set of S of points such that, for 1 < k < m, there is a straight
line ¢, containing exactly k& points of S.

Now suppose that m = 2n. Now remove points from 4,,, 4,41, .., %2, in that order.
Since /4, 1 < j < n, intersects £,,lpt1,...,0n+j—1 in at most j points, when the
points on line ¢, ; are removed, at most j points had been removed previously. Thus at
least n points are removed. Hence the total number of points is at least n(n + 1). Thus
f(2n) >n(n+1).
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If m = 2n + 1, remove points from £, 41, ,42,...,0on4+1 in that that order. Now at
each step, the number of points removed is at least n + 1. Therefore f(2n+1) > (n+1)%

For m = 2n, we now construct a configuration of n(n + 1) points that satisfies the
given condition. Take a set of 2n + 1 lines fg, £1,{s,..., {3, with no 2 parallel and no 3
concurrent. For each pair (u,v) with n < u < v < 2n, place a point at the intersection
of £, and ¢,. This yields (”;1) = n(n + 1)/2 points and now each of the lines ¢, ..., {2,
contains n points. For each j with 1 < 5 < n — 1, place a point at the intersection of ¢;
with lop41-j,...,f2,. Finally, place a point at the intersection of ¢y with £, 1,...,%2,.
This yields another 14+ 2+ ---+n = n(n+ 1)/2 points giving a total of n(n + 1) points.
Also for each j =1,2,...,2n, {; has exactly j points.

For m = 2n + 1, we do a similar construction, with a set of 2n + 2 lines ¢y, ..., lan4+1.
Here we first place a point at the intersection of 4,4, withn+1 <wu <wv <2n+ 1. Then
we do similar thing to £y, ..., £,.

Thus f(2n) =n(n+1) and f(2n+1) = (n+1)2.

10. Fix an integer k > 2. Two players, called Ana and Banana, play the following game
of numbers: Initially, some integer n > k gets written on the blackboard. Then they take
turns to move, with Anna making the first move. A player making a move erases the
number m that has just been written and writes a number m’, with k < m’ < m, that is
coprime to m. The first player who cannot move anymore loses.

An integer n > k is called good if the initial number is n and Banana has a winning
strategy. Otherwise it is bad.

Prove that two integers n and n’ are either both good or both bad if for any prime
p<kp|niffp|n

Soln. We shall only consider integers > k. For two integers m,n, we say m ~ n if the
prime factors of m and n which are < k coincide. Also we define f(n) to be the smallest
integer such that n ~ f(n).

Note that in a move a good number can only be replaced by a bad number. Thus we
have the following two lemmas.

Lemma 1. For any two integers m,n, if gcd(m,n) = 1 then at least one of them is
bad.

Lemma 2. Given an integer n, if for all m < n with ged(m,n) = 1, m is bad, then n
s good.
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The third lemma is crucial.
Lemma 3. For any n, the prime factors of f(n) are < k.

Proof. If suffices to prove that there is an integer x < n such that x ~ n and z has
no prime factors > k. If n contains no prime factor > k, we can take x = n.

Otherwise n has a prime factor ¢ > k. Let a be the product of all the prime factors
of n which are < k and let p be one of these prime factors. If a > k, we can take = = a.
Otherwise a < k. Let j be the smallest power such that p’a > k. Then j > 1 and
p’~la < k < q. Thus p’a < pg < n. Thus we can take z = p/a.

The required result then follows from the next lemma.
Lemma 4. For any integer n, n is good iff f(n) is good.

Proof. We shall prove by induction on n. The base case n = k is trivially true as
k = f(k). Let n be an integer > k. Now we suppose that the result holds for all integers
less than n. Suppose n is good. Let m < f(n) be such that ged(m, f(n)) = 1. Then, by
Lemma 3, ged(f(m),n) = 1. Since n is good, f(m) is bad by Lemma 1. By the induction
hypothesis, m is also bad. Then by Lemma 2, f(n) is good.

Conversely, suppose that f(n) is good. For any integer m < n with ged(m,n) = 1, we
have ged(m, f(n)) =1 by Lemma 3. Thus m is bad by Lemma 1. Hence n is good.

The selection and training of the Singapore team to the International Mathematical Olympiad
is the responsibility of Singapore International Mathematical Olympiad Committee (SIMO). The
national team is selected through the Singapore Mathematical Olympiad (Open section). These
students undergo rigorous training from October to April. The final six members of the national
team are selected based on the results of the National Team Selection Tests. The 2014 version of the
tests is published in this issue. See next page for the flow chart of the selection process.
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Selection Procedure of IMO participants
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