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Singapore International Mathematical
Olympiad Committee

2013 National Team Selection Test

Problems and Solutions

1. Let AD be a diameter of a circle with centre O. Let P be a point such that DP

is a tangent to the circle, and let B, C' be on the circumference of the circle such
that BC'P is a straight line. If OP intersects AC at F, show that BA is parallel
to DE.

Solution 1. Extend AB and AC to meet the tangent line DP at S and T
respectively. To show BA || DE, it suffices to show that g_? = 30 Now from

DT*
ANADT, we have %g—g% = 1 which implies % = %. Hence it suffices to
SD _ PD
show that DT — TP

P
Let SD =z, DT =y and TP = z. we want to show that = Y2 From AAST,

z
we have g—gg—?g—g = 1. Also since AD L SD, BD 1 AS, we have 48 = DA?

1 BS DS?
TC _ DT
and CA — DAZ" ) ,
sk . DT SP __ Ttyt+z _ :
Combining the above result, we get Fgz - pp = 1. Hence % - T2 = 1 which

implies z = my—fy so that % = %
Solution 2. Let the extension of DE intersect the circle at F'. Let AD intersect
FB at O'. We have that C'A intersects DF at F, and the tangent at D intersects
BC at P. By Pascal’s theorem applied to the (degenerated) hexagon CADDF B,
we have E,O’, P are collinear. This means O’ = O, so that BF is a diameter.
Hence /BDF = 90°. Therefore, /BAD = 90° — /BDA = /ADE. This shows
that AB is parallel to DE.
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2. Let n > 4 be a positive integer. Exactly one integer is written in each cell of an
n X 1 square such that the sum of all these integers is positive, while the sum of
the integers in any 3 x 3 square is negative. Find all the values of n for this to
be possible.

Solution All n that is not divisible by 3.

Firstly, if n = 3k, the n x n square can be divided into exactly k? disjoint 3 x 3
squares, and since each of these sums is negative, the sum of all numbers in the
n X n square will be negative too, which violates the condition given.

Now for n = 3k+1 or 3k+2, we just need to provide a construction that works.
Let C'(i,7) denote the number in the cell of the ith row and the jth column.

The case n = 3k + 1. Let C(3p+2,3¢+2) =C(3p+2,3¢+3) =C(3p+
3,3¢+2)=C(3p+3,3¢+3) = —bforall p,g=0,1,2,...,k — 1, and all other
entries C'(4,7) = a.

Clearly, the sum of all integers in any 3 x 3 squares is 5a — 4b, and the sum of
all integers in the n x n squares equals [(3k+1)? —4k%)a—4k?b. Tt suffices to show
that there exist integers a and b such that 5a < 4b and (5k? + 6k + 1)a > 4k2b.
We need %a <b< %a + 62:51 a, which means we can just choose an integer a
such that 6flj21a > 1. This makes the difference between the two numbers %a and
%a + GZ;'Ela to be greater than 1 so there exists an integer b between them. In
particular, we can choose a = 4k? and b = 5k? 4+ 1. See the examples for k = 1

in matrix 1, and k = 2 for matrix 3 below.

The case n = 3k+2. Let C(3p+3,3¢+3) = —bforallp,g=0,1,2,...,k—1,
and all other entries C'(i,5) = a. Clearly, the sum of all integers in any 3 x 3
squares equals 8a — b, and the sum of all integers in the n x n squares equals
[(3k +2)? — k?]a — kb = (8% + 12k + 4)a — k?b. Hence we need integers a and
b such that 8a < b < 8a + 12]]:—;'4& Here we choose a = k2 and b = 8k%? + 1. See
the examples for k = 1 in matrix 2, and &£ = 2 in matrix 4 below.

11 11
4 4 4 4
© 6 6 4 11 11
1 211 -9 11
Wy 6 6 4] ¥
11 1 11
4 4 4 4
11 1 11
44 4 44 4 4 4
16 16 16 16 16 16 16
44 4 44 4 44
16 —21 —21 16 —21 —-21 16
44 -33 4 4 -33 4 4
16 —21 —21 16 —21 —-21 16
16 16 16 16 16 16 16 (4)44 iodd 4
44 4 44 4 44
16 —21 —21 16 —21 —-21 16
44 -33 4 4 -33 4 4
16 —21 —21 16 —21 —-21 16
44 4 44 4 44
16 16 16 16 16 16 16
44 4 4 4 4 4 4
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3. Let S denote a regular hexagon and its interior with side length 1. Find the

smallest real number r satisfying: one may colour the points in .S using three
different colours such that the distance between any two points with the same

colour is smaller than r .

Solution Refer to the following colouring scheme. We divide the regular hexagon
into three regions (figure on the left). The common edge of any two regions could
follow the colour of either side. A, B and C are coloured the same as Region I,
IT, TIT respectively. In this case, r = % (Here AB=BC =CA = %) We claim

that r < % is impossible. Suppose otherwise.

Let A be an arbitrary point on the circle inscribed inside the regular hexagon
(figure on the right). Consider the equilateral triangle ABC'. Refer to the above
diagram on the right. We have AB = BC = CA = % Therefore A, B and C'
must be coloured differently. Since r < %, there is a point Ay on the inscribed
circle along the minor arc AB such that Ay B = r. Similarly, there is a point
A, on the inscribed circle along the minor arc AC such that A.C = r. Then
any point A’ on the open arc AyA. containing A has A’B, A’C > r. Thus A’
is coloured the same as A. We continue this argument with A’. It follows that
the entire circle must be coloured the same as A, which is clearly absurd. In

conclusion, rp;, = %

. Let n be a positive integer. Determine all polynomials P with real coefficients

such that
(" 4+ 1)P(z) = P(z?)

for all real numbers z.

Solution Note that the zero polynomial and =™ —1 works, since (z"+1)(z"—1) =
22" — 1. Note also that the only polynomial of degree zero that works is the zero
polynomial. Suppose P(x) satisfies the condition given and the degree N of P(x)

is positive. Then

deg((z" +1)P(2)) =n+ N, deg(P(2?)) = 2N,
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and thus N = n. Hence there exists a € R, a # 0 and U a polynomial with real
coefhicients such that

P(z) =ax" + U(x), deg(U) <n.
Let V = U + a, such that we have
P(z)=a(z"—1)+V(z), deg(V)<mn.
Then we have
(2" + 1)P(z) = P(z*) & (2" + D(a(z" — 1) + V(x)) = a(z®™ — 1) + V(z?).
This implies
(2" + 1)V (z) = V(z?).
Hence V is also a solution. But this implies V' = 0 since deg(V') < n. Thus we
have
P(z) = a(z"™ —1).
It is easy to check that all polynomials of this form satisfy the polynomial equa-

tion.

. Let n > 1 be an integer. What is the maximum number of disjoint pairs of
elements of the set {1,2,...,n} such that the sums of the different pairs are
different integers not exceeding n?

2n5—1J )

Consider x such pairs in {1,2,...,n}. The sum S of the 2z numbers satisfies

Solution The answer is |

142 +22<5<n+(n-1)+---+(n—x+1).

Thus z < %
We show a construction with exactly LQ”—E)_lJ pairs. For n = 5k+3, 5k+4, 5k+5,
the following gives 2k + 1 pairs, which is the required number.

N 9 k| k+1 | k+2 2% +1
M k1| 4k —1 % +3|ak+2| 4k 2% +2
Sums |4k +2 |4k +1|--- |3k +3|6k+3|5k+2] - |4k +3

For n = 5k + 2, the table is the same but with the pair {k + 1,4k + 2} removed.
For n = 5k + 1, remove the last pair and subtract 2 from each number in the
second row.

. A set A of integers is said to be admissible if for any z,y € A (not necessarily
distinet), 2% + kay + y? € A for every integer k.
Determine all pairs m, n of nonzero integers such that the only admissible set
containing both m, n is the set of all integers.
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Solution First observe that if ged(m,n) = d > 1, then the set dZ # Z consisting
of all multiples of d is admissible and contains both m and n.

Now suppose that ged(m,n) = 1. Let A be an admissible set containing m,n.
We have the following two observations.

(i) For all z € A, by letting y = x in the definition of admissible sets, we have
kx? € A, for all k € Z.

(ii) For all 7,y € A, (z + y)* = 22 + 2zy + ¢ € A.

Since ged(m,n) = 1, ged(m?,n?) = 1. Hence, there are integers a,b such
that am? 4+ n? = 1. From (i), we have am?,bn? € A and from (ii) we have
1 = (am? + bn?) € A. Using (i) again, we have k x 12 = k € A for all k € Z.
Thus A = Z.

. Let ACBD be a quadrilateral with AC' intersecting DB at E and C'B intersecting

AD at F. Let O be a point on a circle w. The rays OA, OC, OB, OD, OF and
OF intersect w at A, C', B’, D', E' and I’ respectively. Prove that A'B’, C'D’
and E'F’ are concurrent.

Solution Mark the angles «, 3,v, 4, n and § as shown in the figure. By the
converse of Ceva’s theorem, it suffices to show that in the triangle A'E'D’, we

have

sinav sinf  sinvy 1

sing  sind  sinpy
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Using sine rule on the six triangles, OAC,OCE, OEB,OBD,ODF and OFA,

we have

sina sin ZACO
AC OA
siny  sinZOBE
EB OF
sin  sin/ZOFD
DF OD
sing  sin(180° — ZACO)
CE OF
sinp  sin(180° — ZOCFE)
BD OD
sin (180° —6)  sin(£ZOFD)
AF B OA

Suitably multiplying these, we obtain

sina sinf8 siny AC EB DF
sing sinéd sinp CE BD FA

By Menelaus’ theorem applied to the triangle AED with transversal CCF, this
product is equal to 1. Therefore, A’B’, C'D’ and E’'F’ are concurrent.

. Let ABC'D be a cyclic quadrilateral whose diagonals AC' and BD meet at E.
The extensions of the sides AD and BC beyond A and B meet at F. Let G be
the point such that ECGD is a parallelogram and let H be the image of E under
reflection in AD. Prove that D, H, F, G are concyclic.

G

F

Solution We first show that AF DG ~ AFBE. Since ABCD is cyclic, AEAB ~
AEDC and AFAB ~ AFCD. The parallelogram yields GD = EC and
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10.

/CDG = /DCE. Also /DCE = /DCA = /DBA. Therefore

/FDG=/FDC+ £2CDG = £4FBA+ Z/ABD = /FBE,
GD _CE_CD_FD
EB EB AB FB’
Since H is the reflection of E with respect to F'D, we conclude that
(FHD = /FED = 180° — ZFEB = 180° — ZFGD.

This proves that D, H, F, G are concyclic.

. Determine all integers m > 2 such that every n with % <n< % divides the

binomial coefficient (mf%).
Solution The answer is all the prime numbers.
First we check that all prime numbers satisfy the condition. We’ll show that

if p is a prime, then n | ( ) whenever 1 <n < £. This is certainly true when

n
p—2n
p = 2. Now assume that p is an odd prime and 1 < n < p/2. We have

(p_Qn)<p—n2n> :n<p—n2;1—1>'

Since p > 2n and p is odd, all factors are nonzero. If d = ged(p — 2n,n), then
d | p, but d < n < p and hence d = 1. It follows that ged(p — 2n,n) = 1. Thus
w2
Next we show that any composite number m does not satisfy the property.
Case (i): m = 2k for some k > 1. Take n = k. Then § < n < 3 but
(.. ) = (]8) = 1 is not divisible by n.
Case (ii): m is odd. Then there exists an odd prime p and an integer k > 1
such that m = p(2k + 1). Pick n = pk. Then % <n < 3. However,
1( n > _ i(pk> _ Wk -D@k=2)---(pk—=(p—-1))
n\m—2n pk\ p p!

is not an integer because p divides the denominator but not the numerator.

Players A and B play a game with N coins and 2013 boxes arranged around
a circle. Player A starts the game by distributing the coins so that there is
at least 1 coin in each box. They then take turns to make moves in the order
B,A,B,A--- as follows:

e B takes 1 coin from every box and puts it into an adjacent box.

o A takes several coins that were not involved in the previous move by B, with
no two from the same box, and puts each of these coins into an adjacent
box.

Find the minimum value of N so that A can ensure that after each of her

moves all the boxes are nonempty.
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Solution The answer is N = 4024. First let N = 4024. A regular distribution
is one in which two of the boxes contains 1 coin each and the remaining boxes
contains 2 coins each. A starts the game with a regular distribution. We call a
box red if it contains more than 1 coin and white if it contains only 1 coin. After
B has made his move, A cannot move any coin in a white box (since any coin in
it has been moved by B) and can move one of the coins in a red box (since B
can move only one of the two coins in it). For each red box, if B moves one of
the coins to one of the neighbours, A will move one coin to the other neighbour.
This will ensure that every red box has at most 2 coins and each of its neighbours
is nonempty. Since there are only two white boxes, each has a red neighbour.
Thus they are both nonempty and contain at most 2 coins each. A red box can
become empty if it is adjacent to two white boxes and B has not put any coin
into it. When this happens, A can ensure that this red box is nonempty by not
moving the coin in it. Thus A can move the coins so that the distribution is
regular.

An alternative solution:

The initial distribution is again regular. We consider B’s move as a directed
graph with the boxes as vertices. There is a directed edge from a to b if B moves
a coin from a to b. Thus every vertex has an out edge to either its left or right
neighbour. The graph formed can be a directed cycle. In this case A can respond
by not moving any coin or if a move must be made, she can move a coin from a
red box to a neighbouring white box. Otherwise, each connected component is
a directed 2-cycle with 0, 1 or 2 tails as shown below.

The number of coins increases by 1 at x and decreases by 1 at y. Thus z will
hold 3 coins if it is red and y will be empty if it is white. Since there are only
two white boxes, they are either (i) on different tails or (ii) on the same tail. In
case (i), for each vertex z that is red, A moves a coin from each box starting with
x until it reaches y or until it reaches a white box whichever comes first. The
resulting distribution will be regular. In case (ii), proceed as in (i). Then no box
contains 3 coins. Only one box can be empty, the white box that is in position
y. Then A can move a coin from a neighbouring red box from a neighbouring
component, thereby obtaining a regular distribution.

Now consider the case where N < 4023. We'll show that B wins. We’'ll provide
2 solutions.

First solution:

Label the boxes 1, 2, ..., 2013 clockwise. Each coin = in box ¢ is assigned a
value s(x) which is the shortest distance from box i to box 1 along the circum-
ference. Let S = > s(z). B will move coins counterclockwise from boxes 1 to
1000 and clockwise from bhoxes 1001 to 2013. This will decrease the value of S
by 2011. Since there are at least 3 white boxes, A can move at most 2010 coins
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The selection and training of the Singapore team to the International Mathematical
Olympiad is the responsibility of Singapore International Mathematical Olympiad
Commiittee (SIMO). The national team is selected through the Singapore Mathematical
Olympiad (Open section). These students undergo rigorous training from October to
April. The final six members of the national team are selected based on the results of
the National Team Selection Tests. The 2013 version of the tests is published in this issue.
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