Bayes Rule Without Probability

Yap Von Bing

Look up Bayes rule or Bayes theorem, and you will find that it is almost always
stated in terms of probability. Here, I describe a deterministic analogue which is easier
to understand and is perhaps more suited for appreciating the applications. Starting
with a realistic example from medical diagnostics, the reader is invited to work through
several exercises leading to the derivation.

Problem. In a town of 200 people, 10% have a disease. A diagnostic test is very accu-
rate: among the healthy, 70% test negative; among the sick, 80% test positive. Among
the people who test positive, what percentage are sick?

A good approach is to use the 2 x 2 table shown below. The symbols are h: healthy,
s: sick, —: tests negative, +: tests positive. The four cells defined by these symbols
should contain the number of people in each category. The numbers sum to 200, which
can be checked through the row or column sums. These sums appear at the margins of
the table. Try filling up Table 1.

- + Row sum
h
S
Column sum 200

TABLE 1. Counts.

There are many ways to proceed. The most efficient one is to figure the row sums,
then the row counts, and finally the column sums. There are 70 people who test positive,
of whom 16 are sick. So the answer is 16/70 ~ 23%.

The answer is surprising. If a person in the town tests positive, he is not confident
that the test is correct, since less than 1 in 4 who test positive are sick. This happens
whenever the diseases is rare, even if the test is very accurate (but not perfect). The
practical lesson: for a rare disease, such as HIV infection, multiple positive tests are
needed before diagnosis. However, since only 1 in 10 town residents is sick, the test
helps: the proportion of sick people is higher in the positive group than in the negative
group. Just not as much as we expect.

Clearly, the table method works for any test on any population. To get a formula,
we convert the counts into proportions (Table 2). The proportion of people who test
positive and are sick is 0.08, the proportion of people who test positive is 0.35, and the
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answer is their ratio. This is nothing new: the proportions are obtained from the counts
by division by 200.

— + | Row sum
h 0.63 | 0.27 0.90
S 0.02 | 0.08 0.10
Column sum | 0.65 | 0.35 1.00
TABLE 2. Proportions.

Now we introduce some shorthands. Let pr(c) denote the proportion of people in
category c¢. Here we have pr(s) = 0.10 and pr(+) = 0.35. The category can be more
complicated: pr(h, —) = 0.63 is the (joint) proportion of people who are healthy and test
negative. That h appears before — is arbitrary: we can also write the same quantity as
pr(—, h). These symbols are all represented in Table 2. Next, the proportion of people
who are sick among those who test positive, which we worked out to be about 0.23, is
a conditional proportion. It is written pr(s|+), read “conditional proportion of s given
+”. While a proportion refers to the whole population, a conditional proportion refers
to a subpopulation specified by the category appearing after the | symbol. Thus, pr(s|+)
is the proportion of sick people in the subpopulation who test positive, but pr(+|s) is
the proportion of people who test positive in the subpopulation who are sick, which is
given as 0.8. Unlike the joint proportion, switching categories in a conditional proportion
matters.

The notations allow us to restate the problem, as you should verify. Given pr(s) = 0.1,
pr(—|h) = 0.7 and pr(+|s) = 0.8, find the value of pr(s|+). Table 2 shows that given the
three proportions, we can find 8 proportions (excluding the 1.00): there are general rules.

Addition Rule. In the example, it is easy to see that pr(h) + pr(s) = 1. There
are 200 x 0.1 = 20 sick people, so there are 200 — 20 = 180 healthy people, and
pr(h) = 180/200 = 0.9. Similarly, pr(—) + pr(+) = 1. The general argument, or proof,
has almsot the same structure. Let the town have n people, of whom n(h) are healthy
and n(s) are sick. Since a person is either healthy or sick, but not both, n(h)+n(s) = n.
Divide this equation by n. By definition, pr(h) = n(h)/n and pr(s) = n(s)/n, so the
proof is complete.

Exercise 1. Prove an addition rule for joint proportions: pr(h,—) + pr(s,—) = pr(—).
Similarly, pr(h,+) + pr(s,+) = pr(+).

Multiplication Rule. pr(h, —) = pr(h) x pr(—|h). This rule implies that in the exam-
ple, pr(h, —) = 0.9 x 0.7 = 0.63. Similarly, pr(s,+) = pr(s) x pr(+|s) = 0.1 x 0.8 = 0.08.
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Exercise 2. Prove the multiplication rule. To start, let n, n(h) be as before, and let
n(h, —) be the number of people who are healthy and test negative.

Exercise 3. Prove an addition rule for conditional proportions: pr(h|—)+ pr(s|—) =1
in two ways: (a) with the multiplication rule, (b) without.

Table 2 can now be filled up without going through Table 1. By addition rule, the
second row sum is pr(s,—) + pr(s,+) = pr(s), given as 0.1, hence by the same rule, the
first row sum is pr(h) = 1—pr(s) = 0.9. We have seen above that multiplication rule gives
pr(h, —) = 0.63, the first number in the first row. Then addition rule implies pr(h,+) =
pr(h) — pr(h,—) = 0.90 — 0.63 = 0.27, the second number. The second row is found
similarly. Finally, by addition rule, the first column sum is pr(—) = pr(h, —) +pr(s,—) =
0.63 + 0.02 = 0.65. The second column sum is pr(+) =1 —pr(—) =1 — 0.65 = 0.35, by
addition rule.

The previous paragraph seems superfluous. But it is a good warm-up for deriving
pr(s|+) from pr(s), pr(—|h) and pr(+|s).

pr(s|+) = pr(s, +) (multiplication rule)

pr(+)
pr(s, +) .
— ddit |
i -t] £ Do, T (addition rule)

= pr(s)pr(+s) (multiplication rule)

pr(R)pr(H1A) + pr(a)pr(H]s)
= pr(s)pr(—i—]s) addition rule
= - o —pr(— M) + pr(e)pr(els)  \Rddition rule)

Usually, Bayes rule looks like the third line. The fourth line shows the relationship more
explicitly. It is worthwhile to work the derivation backwards, paying close attention to
the justifications.

Bayes rule is efficient, but not the only way to find pr(s|+). By definition, pr(s|+)
is a ratio of two integers, and can be expressed in other ways (first two lines of the
derivation). If the given information fits, any of these three should be used instead.
Bayes rule is like the Circle Line route from Kent Ridge to Serangoon. If you start from
HarbourFront instead, it is fine to take the Circle Line via Kent Ridge (In mathematics
speak, we reduce the new problem to an old one.), but a smarter way is the North East
Line. The formula is a snapshot of the complete picture embodied in Table 2, which is
sometimes useful to compute. For instance, to find both pr(s|+) and pr(h|—), you just
need to compute two ratios. If you are a computer, you will happily store many instances
of Bayes rule. But a human, as I think you are, should appreciate the pros and cons of
both approaches, and their connection.

Bayes rule is a powerful tool for answering important practical questions. For which
values of pr(s), pr(—|h), pr(+|s) is the test sensible, i.e., pr(s|+) > pr(s), such as in the
example here? If a test is sensible, is it true that pr(h|—) > pr(h)? More interestingly, it
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facilitates a quantitative exploration of the example. What do we mean by “surprise”?
Under what conditions does it occur? Approaching all such questions via the table
method is laborious.

Although Bayes rule was derived for a specific example, stripped to the logical bare
bones, it applies for any variable with only two categories, which in this case is health
status: healthy or sick. This naturally generalises to more categories. Suppose a variable
has k categories aq,...,a, and let b be any category.

Exercise 4. Show that for 1 < i < k, the conditional proportion of a; given b is
pr(a;)pr(bla;)
k

Zj:l pr(a;)pr(bla;)

pr(ailb) =

Finally, some words about probability. A probability is a proportion, but a proportion
need not be a probability. In our town, pr(s) = 0.1 is the proportion who are sick, pure
and simple. If we select a person at random, then the probability that this person is sick
is 0.1. In contrast, proportions, even the conditional ones, are elementary descriptions
of a population. Hence, I think the deterministic Bayes rule should be learnt first. As
shown in our example, proportions are sufficient for understanding the paradoxical issue
in medical diagnostics. Invoking probability here, as is done in many textbooks, muddles
the issue, and can land the instructor in some trouble: What does “The probability that
a person is sick is 0.1.” mean, exactly? Elementary textbooks rarely offer a careful
discussion of this innocuous-looking question.

More technically, the deterministic addition and multiplication rules can be used to
prove the analogous rules in the frequency theory of probability. In particular, the
conditional probability P(A|B) has a frequency definition, and P(A, B) = P(B)P(A|B)
is a theorem. Many textbooks, as well as the H2 Mathematics Syllabus, has P(A|B) =
P(A, B)/P(B), which looks like a definition for conditional probability. This is necessary
in the very general framework of Kolmogorov, but the frequency theory of probability
is so important for applications, it makes sense to adopt the stronger set of axioms, at
least for the beginner.
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