Problem Posing and Constellations
in Mathematics:

Using a Biography of a Recent Mathematician for Teaching

Mathematics

K. Immaculate Namukasa
with A. Katherine Minello, J.Sarah Dent, and Anthony Staibano

ABSTRACT

There are conceptual, socio-cultural, and motivational aspects to using the history of
mathematics and science in teaching and learning. By using biographies - the lives and works of
great mathematicians and scientists - teachers can integrate history of mathematics into their
teaching. This paper is about mathematician Paul Erdés (1913-1996, Hungary), whose major
work was in the field of number theory. Featured are Erdds’s emphasis on conjecturing and
problem solving, his mathematical accomplishments at a young age, his collaborative work, and
his fascinating character. The paper demonstrates how to use a biography of a recent
mathematician to promote key learning processes such as problem posing and collaboration.
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Why are numbers beautiful? It's like asking someone why is Beethoven’s Ninth
Symphony beautiful. If you don’t see why, someone can'’t tell you, I know numbers
are beautiful. If they aren’t beautiful, nothing is.

Paul Erd6s

This paper is about the life and works of mathematician Paul Erdés (1913-1996, Hungary),
whose major mathematics work was in the field of number theory. It outlines specific lessons for
school mathematics from Erdés’s life and work.

Since the 1980s, educators have encouraged teachers to use the history of mathematics
and science in their teaching (see Bidwell, 1993; Liu, 2003). Gulikers and Blom (2001) have
categorized the roles of history of mathematics and science in teaching and learning into
conceptual roles, socio-cultural roles, and motivational roles. The use of biographies - the life
and mathematical works of great mathematicians and scientists - is one way of integrating the
history of mathematics into teaching. It demonstrates social, cultural, and personal aspects of
mathematical activity (Fauvel, 1991; Ernest, 1998) and motivates students who are interested in
stories. But most importantly, teachers may wuse biographies of recent and ancient
mathematicians to illustrate the mathematical and scientific processes encouraged by most
reform-based curriculum documents such as the NCTM Standards 2000.
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Erdés’s Life — An Introduction

Paul Erdés was born into a Hungarian-Jewish family on March 26, 1913 in Budapest, Hungary.
Erdds was not even a year old when World War | broke out. His father was captured by the
Russian army and sent to Siberia, where he spent six years in captivity. During that time Erdds’s
mother worked out of town, leaving her son behind (O’Connor & Robertson, 2000). The tragic
death of Paul’s two older sisters from scarlet fever resulted in Erd6s being home-schooled by his
parents, both high school mathematics teachers. His parents felt a need to protect their son from
exposure to infectious diseases.

By age four, Erds was able to convert the ages of his peers to seconds and the distances
between planets to distances traveled by a train (Hoffman, 1998). When his parents’ friend
asked, “What is 100 less 250?” Erdds replied, “150 below zero.” At ten Erdés was already
interested in prime numbers. At fourteen he asked another teenager who loved mathematics,
“Could you give me a four digit number?” “2532,” said the teenager. “The square of it is
6411024,” Erdoés replied. “How many proofs of the Pythagorean theorem do you know?”” Erdds
asked. “One,” said the teenager. “I know 37,” Erdds responded (Chung & Graham, 1998, p. 119-
120). By the time Erdds was 17 his father had already introduced him to the work of
mathematician George Cantor (1845-1915, Russia/Germany), the inventor of set theory.

:

Figure 1. Erdés at age 14 (left) and age 17 (right).
Photograph courtesy of the J. Bolyai Mathematical Society.

As a Jewish youth living in Hungary, Erd6s would not have attended the University of
Budapest had he not won the national examination in 1930. He studied mathematics and in 1934
received a PhD in number theory. He traveled throughout his working life, taking up temporary
university positions and collaborating with mathematicians in other countries, first in the United
Kingdom, then in the United States, and later in Israel, France, the Netherlands, Canada and
many other countries (Bollobas, 1998).

Erdos’s life was both fruitful and peculiar. As a nomadic mathematician, he kept a few
possessions in a suitcase, rarely stayed in one place for long, and often went from a university, to
a conference, and then to a mathematician’s home. “Another roof, another proof” was one of
Erdo6s’s maxims (Babai & Spencer, 1998). In the later decades of his life, he would show up
unannounced and exclaim, “My mind is open.” He would then stay long enough to collaborate
on a proof. Erdos published around 1500 papers with 511 collaborators before he died of a heart
attack in Warsaw, Poland at a graph theory conference in 1996 (Hoffman, 1998). The number of
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Erdds’s publications is second only to that of Leonhard Euler (1707-1783, Switzerland), who had
more pages but fewer actual papers (Babai & Spencer, 1998; Hoffman 1998). About his
numerous publications Erdds would encourage, “Weigh them, do not count them.” Euler and
Erdés were unique among mathematicians in that they produced most of their work in the last
decades of their lives (Bollabas, 1998). In later years Erdos lived with his mother, traveling from
conference to conference with her. Erdos suffered from cataracts, which he had difficulty finding
time to have removed. Time spent in hospital, he explained to his friends, would delay progress
in mathematics.

Figure 2. Erdés deep in thought.
Photo by Wlodzimierz Kuperberg, 1985

Erdés had an eccentric vocabulary. Children were epsilons (mathematicians often use
epsilon, ¢, to represent small positive quantities), and giving a math lecture was preaching. Erdos
spoke of The Book, where he believed God keeps all elegant proofs. He said the same God often
hid socks and passports.

Perfect Numbers — Collaborating with Students

Erdos worked with many students at many levels. As a teenager, he solved problems published
in a secondary school journal in Hungary. Two other successful problem-solvers, Paul Turan and
Tibor Gallai, became Erdds’ university classmates and lifelong collaborators. Erdés published a
mathematics article with a 14 year old, Lajos (Schechter, 1998).

Figure 3. Erdds s university classmates Tibor Gallai at 18 (left) and Paul Turan at 17 (right).
Photograph courtesy of the J. Bolyai Mathematical Society.
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Some mathematicians in different parts of the world including India recount having interacted
with Erdés while they were still students. At the urging of his mentor, a university professor,
Hawaiian high school student David Williamson wrote Erdds a letter inquiring about the
originality of a number theory proof he had just completed on perfect numbers. Perfect numbers
are numbers such as 6, 28, 496, 8128, and 3355033 that are formed by adding their factors, say, 6
=1+2+30r28=1+2+4+7+ 14. The last number in the sum equals the sum of the rest of
the numbers in the sum. Perfect numbers can also be formed by adding consecutive numbers
starting from one; that is to say, 28 =1+2 +3 +4 + 5+ 6 + 7 and as such is also a triangular
number. Perfect numbers have many other interesting properties and have engaged
mathematicians since ancient times. Williamson had proved that an odd perfect number (if there
is one, for none has ever been found for numbers less than 10°"") must have exactly one prime
factor that leaves a remainder 1 when divided by 4 (Weisstein, 2008). Put differently, an odd
perfect number is congruent to 1 modulo 4. Special numbers such as prime and triangular
numbers and special number sequence are a topic in middle grades number and algebra concepts.
Zazkis & Campbell (2006) maintain that by including elementary number theory in the school
curriculum students get to explore algebraic formalizations of integer arithmetic. Activities on
splitting numbers illuminate the equivalent meaning (as opposed to the “find the answer”
meaning) of the equal sign.

Euclid (c. 350 BC, Ancient Greece) was the first to notice that the first four even perfect
numbers 6, 28, 496, 8128 can be generated by the formula 2"~ 1(2'7 — 1) where (2" — 1) is prime.
For instance, when n = 2, then 2" '(2" — 1) is 2 x 3, which results in the first perfect number, 6.
Later prime numbers of the form 2" — 1 were labeled the Mersenne primes after another
mathematician. Son=2, 3, 5, 7 ... give Mersenne numbers 2" — 1 = 3, 7, 31, 127, respectively.
Ibn al-Haytham (c. 965-1040, Persia-Egypt) conjectured that every even perfect number is of the
form 2"7'(2” — 1). Thus, Mersenne numbers 3, 7, 127 have corresponding perfect numbers 2 x 3,
2°x7, 2* x 31, 2° x 127. Ibn al-Haytham’s conjecture remained unproved until Euler proved it
700 years later. Erdés promptly responded that Williamson’s proof had been done earlier by
Leonhard Euler. In the same letter Erd6s shared a related conjecture, which Euler had also
proved, and encouraged Williamson to solve one of Erdds’s problems that involved perfect
numbers (Babai & Spencer, 1998; Hoffman, 1998). Perfect numbers and Mersenne number
sequences (3, 7, 15, 31, 127...) could be explored as special historical sequences when middle
school students explore special number sequences such as Fibonacci, exponential and prime
number sequences and at high school lesson when they explore exponential functions.

The Prime Number Theorem — a Beautiful Proof

Erdds developed an extraordinary interest in prime numbers after his father taught him that there
are infinitely many primes and that these primes have arbitrarily large gaps - there are no patterns
in the sequence of primes: 2, 3, 5, 7, 11, 13, 17.... Erdds eventually explored an elementary
proof for the Prime Number Theorem (PNT). At age 18 Erdds had provided an elementary proof
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- an elementary proof uses concepts that are intuitive as regards the theorem being proved - to
another number theorem about primes that is usually mistaken for the PNT.

Joseph Bertrand (1822-1900, France) in 1849 conjectured and verified that between any
two numbers » and 2n, where »n is a positive integer, there is a prime number. For example,
between 2 and 4 there is the prime number 3, between 3 and 6 is 5 and so on. Pafnuty L.
Chebyshev (1821-1894, Russia) in 1850 proved Bertrand-Chebyshev’s theorem (Hoffman, 1998;
O’Connor & Robertson, 2000), but it was Erdés who first provided an elementary proof. Erdos is
famous for his elementary conjectures and proofs.

The PNT is a famous number theory that centers on the distribution of prime numbers.
The prime counting function n(x) denotes the number of primes less than or equal to a real
number that is greater than 1. For instance n(2) = 1, there being only one prime number, 2, that is
less than or equal to 2, m(3) = 2 two prime numbers are less than or equal to 3, n(4) =2, n(5) =3
and so on. (The use of the symbol © here is not related to the circle measure.) Just recently
established is m(10%%), a number with 22 digits (Weisstein, 2008). The function m(x) generates the
sequence (1, 2, 2, 3, 3, 4, 4, 4, 5, 5, 6, 6, 6, 6...), another special, historical sequence.
Mathematicians have for centuries engaged in studying the function n(x). Many people think that
writing arithmetic tables and inventing algorithms is an ancient mathematics practice that was in
days of early mathematics such as with Babylonian and Egyptian multiplication tables. Quite the
contrary, modern number theorists wrote tables and invented algorithms to calculate values for
n(x). For small ranges, say up to 100, the graph of n(x) shown in Figure 4 is as odd as the graph
of prime numbers - it yields neither a line nor a smooth curve. It is not even a regular step
function, as seen in Figure 4. It is at best an irregular, zig-zag curve.

25

20 1504
1 60000 -

T (X)
154 1001 T (X) m(x)
40000

50 20000 |

0 T T T T 0 T T T T 0 T T T T
0 20 40 60 80 100 0 200 400 600 800 1000 0 200000 400000 600000 800000 1000000
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But, surprisingly, it shows order at a larger scale. The graph of n(x), as shown in Figures
5 and 6, appears to have an interesting shape as the x scale gets larger, say to 1000 or even
1,000,000. To many mathematicians it resembles the graph of a logarithm. It always lies above
the graph of x/log x (or n/ln n as shown in Figure 7) and though it smoothens toward a graph
similar in shape to x/log x, it never crosses that graph as m gets sufficiently large. Discrete
functions, logarithms, limits, exponential, logarithmic and composite graphs, and graphing using
technology are concepts explored in high schools curricular of many countries. Middle school
students who explore Erastosthenes’ sieve method of constructing a table of prime numbers
would be familiar with bigger prime numbers and as such are likely to find the activity of
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generating and graphing the function m(x), especially its regular nature when one zooms out, to
be of interest.
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Figure 7. n(n) imposed on logarithm (log or In) graphs

The PNT states that for sufficiently large numbers x, m(x), the upper graph in Figure 7, is
approximately equal to x/log x, the lower graph in Figure 7. Put differently, n(x) is asymptotic to
x/log x as x tends to oo. Carl Frederic Gauss (1777-1855, German), at age 15, and Adrien Marie
Legendre (1752-1833, France) made the PNT conjecture independently of one another. It was
Jacques S. Hadarmard (1865-1963, France) and de la Valée Poussin (1866-1962, Belgium),
following Riemann’s famous analytic hypothesis, who independently solved the PNT conjecture
a century later. Students who have heard about Gauss in the context of summing number
sequences, and about Euler in the context of Euler formula that relates vertices, faces and edges
of polygons would be motivated to hear about high school mathematics due to these
mathematicians, in this case exponents and graphs of logarithmic functions.

Another century later, in 1949-1950, Erdds and Alte Selberg (1917-2007, Norway/United
States) each provided a more elementary and beautiful proof of the PNT that used logarithmic
properties and did not use modern complex analytic methods. Erdds (1949) and Selberg (1950)
published their proofs separately, but not without furious disputes about intellectual property.
Legend has it that Paul Turan (1910-1976, Hungary), a university classmate of Erdds, shared at a
mathematics conference at which Erdds was in attendance the exciting work in progress of
Selberg, not on the PNT theorem but on a distantly related conjecture. Erdés made and proved a
related conjecture that built on Selberg’s work, and quickly shared it with Selberg. Erdos’s
empathizers show letters in which Erdds, seeing the potential at collaborating on an elementary
proof to the PNT theorem, persuaded Selberg to collaborate with him. Erdds and Selberg
proceeded to accomplish and publish their proofs independently. The proof won Erdds the
American Mathematical Society’s Franklin Nelson Cole Prize in Number Theory and Selberg the
more prestigious Fields medal (Schumer, 2004). Although Erdés won many other prizes, awards,
and honorary degrees, legend has it that the Erdds-Selberg feud cost Erdds several prospects,
including a permanent university job, in the mathematics community (Schechter, 1998).
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Elementary Problems — Building Grander Theories

Erdds is remembered not only for elementary proofs but also for proofs to elementary problems.
Consider the multiplication table used by students in the early elementary grades. A 10-by-10
multiplication table has 100 entries. More than half of these entries are repeats. Studying smaller
cases of multiplication tables shows that a 1-by-1 multiplication table has 1 unique product out
of the total of 1 product; a 2-by-2 multiplication table has 3 unique products out of the total of 4
products; a 3-by-3 table has 6 unique products; a 4-by-4 table has 9; 5-by-5 table has 14 (the
pattern of multiples of 3 is broken at this step); a 6-by-6 table has 18, and a 10 by 10 has 42.
Here is the question Erdds posed and later solved: Are there interesting patterns in the
distribution of unique entries in multiplication tables?

Here is another elementary problem that Erdds formulated about Ancient Egyptian
mathematics. Egyptians, in what are now recognized as limiting ways, conceived fractions,
except for 2/3, as sums of unit fractions. For example, instead of 7/8 they wrote 1/2 + 1/ 4 + 1/8,
and they wrote 4/10 as 1/3 + 1/15. They did not repeat a denominator in a presentation of a
fraction (Chace, 1927). Leonardo Fibonacci (¢.1175-1240, Pisa, Italy) proved that this is possible
for all fractions. In 1932, Erdds proved that reciprocals of numbers with a common difference
(i.e., reciprocals of numbers a, a + d, a + 2d, a + 3d, ...) always sum to a non-integer number
(Hoffman, 1998). The Egyptian way of representing fractions made it easier to compare sizes
and to distribute food among people. It was used in Europe until the 12" century. For example,
Europe was said to be “more than a third and eighth of the whole earth” (Hoffman, 1998). Erdos
asked: How large do the denominators have to get to represent a given fraction? For a fraction
such as 3/19, what is the largest possible denominator in its representation? This problem was
solved three years after Erd6s’ death and earned the solver, a graduate student, a $750 check
signed by Erdés, issued by Ronald Graham, a close collaborator of Erdés. When someone
provided a proof to a conjecture, Erdds would not stop at congratulating the problem-solver. He
used his sense of mathematical aesthetics and humor to judge the elegance of the solution. At
times he would increase a cash prize. For one proof that he deemed ugly and easy, he lowered
the prize to $50 from the promised $250 cash prize (Seife, 2002).

In addition to number theory, Erdés worked on Ramsey theory, graph theory, areas of
classical analysis, complex functions, and probability theory (Babai, Pomerance, & Vertesi,
1998). Ross (1998), a close collaborator with Erdds, says that Erdos was well-read in other
fields, including history, and well-informed in politics. He enjoyed classical music, although he
referred to it as noise.

Here is another example of an Erd6és problem, this time from geometry: For any five
points on a flat surface, as long as they are not in a straight line, is it true that four of these points
will always form a quadrilateral that is convex (i.e., that has no reflex interior angles)? (Chung &
Graham, 1998; Hoffman, 1998). This conjecture may be paraphrased as: How many non-linear
random points do you need to form a triangle? A quadrilateral? A heptagon? and so on. Put
differently, if g(») is the minimum number of random points needed to form an n-gon, is it true
that g(n) exists for all »? What is g(3), the minimum number of random points needed to form a
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triangle? What is g(4)? If we know that g(3) is 3, g(4) is 5, and g(5) is 9, what is g(6)? Is there a
pattern? A young female mathematician in Budapest, Esther Klein, who later married George
Szekeres, posed this problem while the two were university classmates of Erdds. Erdés and
Szekeres solved Klein’s problem for g(4) and g(5) and later generalized the problem to state that
whenever 1 + 2" points are sprinkled on a plane, one can always draw a convex n-sided
polygon, an n-gon (i.e., g(n) is equal to or greater than 1 + 2"2). g(6) = 19 - at least 19 random
points are needed to form a hexagon. This proof, as well as many others by Erdés and his
collaborators, formed a basis for Ramsey theory, which, generally speaking, is about the
impossibility of disorder in sufficiently large random systems. There is at times a tendency to
think that Ramsey theorem was invented by Erdds; Frank P. Ramsey (1903-1930, Britain)
proved the theorem before Erdds became interested in Ramsey-type problems. Szekeres
discovered Ramsey’s proof after they solved Esther’s problem. Erdds termed subsequent work
on questions related to Esther’s question, Ramsey Theory. Ramsey used the metaphor that
shapes seen in star constellations are inevitable with a large enough random arrangement of stars.
Erdds used the analogy of the party problem. Ramsey theory has many applications to computer
science and to gaming. We will return to the grand Ramsey theory further on.

Many mathematicians are concerned with theory building. “One of the areas that set
Erdos apart was his focus on problem-solving and problem-posing” - to conjecture and to prove,
to pose and to solve mathematics problems (Gallian, 2002, p. 329). The many cheques Erdos
issued as cash prizes to people who solved his problems are physical artifacts of his problem
posing art. Other artifacts are the problems themselves, over a thousand (Seife, 2002), many of
which have not yet been solved. Erdos is said to have considered the problems he posed and the
conjectures he made as key to fundamental mathematical problems. In many cases his intuition
was right - solutions to his problems became key in the development of grand theories (Bollobas,
1998). Some of his counterparts thought about Erdés what Erdés thought about God and his so-
called book of beautiful proofs: That Erdés always knew these grander theories - such as Ramsey
theory - but only revealed smaller conjectures one at a time. Historically, it is a common practice
for a mathematician to challenge fellow mathematicians with difficult problems to which he or
she already has solutions. Most of Erd6s’s problems were not in this vein. It is noted that Erdds
shared his unsolved problems and conjectures to facilitate progress in the field of his
mathematics projects.

Ramsey Theory

Erd6s was influential in developing Ramsey theory, which is usually paraphrased as: What is the
minimum number of people that must be invited to a party so that a given number of people will
either be acquaintances or mutual strangers? To solve Ramsey’s problems, Erdds is said to have
developed the Probabilistic Method, which is used in combinatorics, a field of pure mathematics
that deals with permutations and combinations.
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Ramsey theory is closely related to an area of university mathematics known as graph
theory. Graph theory was invented by Euler when he solved another historical problem, the
Konigsberg bridge problem.

2nd
Ist / 3rd
6th 4th
5th

Figure 8. Acquaintances and strangers, a dichromatic graph of Kgat a party -
one random case showing 4 dark triangles

Consider the graph in Figure 8, called K. It is referred to as a complete graph on six
vertices. In upper elementary school mathematics terms, a graph of order six is a hexagon with
all its diagonals. It is a common geometrical representation that students may use to represent
say, handshakes by each of six guests at a party, ordered and colored according to the
handshakes made by each guest. In line with Ramsey theory, Figure 8 is shaded in only two
colors: dark and light green. The problem becomes a Ramsey-type problem, when one color is
used for acquaintances and the other for strangers. In the complete dichromatic (two-colored)
graph of strangers and acquaintances there is likely to be monochromatic (one-colored) sub-
graphs representing mutual strangers or acquaintances. Ramsey theorists have verified that no
matter how you color the complete K¢ graph with two colors, you will always form complete
monochromatic triangles, sub-graphs of order three, K;. You might, in rare cases, get
monochromatic squares, K4, or even a monochromatic pentagon, Ks, in a K¢ graph shaded
randomly with two colors. Here is a paraphrase of Ramsey conjecture: For a party of six guests
there will always be at least either three strangers (an independent set), or three acquaintances (a
clique). In technical terms, R(3 acquaintances, 3 strangers) = R(3, 3) = 6. The minimum number
of guests necessary to get either three acquaintances or three strangers is six. In geometrical
terms, the smallest complete dichromatic polygon in which monochromatic triangles can exist is
a hexagon. This can be generalized to other polygons.

Various versions of Ramsey-type problems exist. Every two pairs of numbers (m, n) have
a Ramsey number R(n, m) - this is a more generalized version of Ramsey’s conjecture. Ramsey
theorem states that for all numbers R(n, m) exists. R(1,1), the minimal guest list so as to get one
friend or one stranger, is 1; R (1, n) is 1; R(2, m) is m; R(3, 3) is 6; R(3,4) is 9; R(3,5) is 14;
R(3,6) is 18, R(4,4) is 18 and R(4, 5) is 25. Hoffman (1998) reports that in 1993 it took 110
computers running in sync to solve for R(4,5). As was the case for generating tables and

j 24 Mathematical Medley Q Volume 38 No.1 June 2012

=



Problem Posing and Constellations in Mafhematics:rrJ

Using a Biography of a Recent Mathematician for Teaching l\/lathema_tircsr—

computational algorithms for m(»), many current mathematicians specializing in Ramsey theory
worked hard at generating tables and algorithms for R(n, m) before they turned to generating
lower and upper bounds of bigger R(n, m). R(n, n) is the Ramsey number for K,. R(5, 5) is
bigger than R(4, 5) and all that is known about R(5, 5) is that it lies between 43 and 49. Erdés is
quoted to have said that R(5, 5) could be found if the need for it was aggravated enough to
warrant collective effort and massive investment (Schechter, 1998). Erdds used what Chung and
Graham (1998) referred to as a counting method to establish the lower bounds for any Ramsey
number. It took decades to displace the lower bound that Erdds first suggested with a revised and
more accurate one. Ramsey theory as is the case with Graph theory is filled with conjectures and
theories by Erdos (Chung & Graham, 1998; Schechter, 1998). Chung & Graham (1998) outline
over 200 Ramsey-type problems, conjectures and proofs by Erdds, 140 of which are joint works.
For instance, Erdés conjectured on the gaps between consecutive Ramsey numbers: R(n+1, n)
and R(n, n). Although Ramsey numbers and establishing lower and upper bounds are not part of
today’s school curriculum, tables, algorithms, gaps between consecutive numbers in sequences
are. As well, there is a lesson to learn about the methods used by mathematicians including
visual, probabilistic and counting methods.

The Erdés Number — Artifact of a Life’s Work

Ramsey numbers and graphs are echoed in an artifact that was developed in honor of Erdos. As a
humorous tribute to Erdds, his friend Casper Goffman created the Erdds number. The first Erd6s
number is 0, which represents Erdés himself. Erdés had 511 direct collaborators. Each of those
people has an Erdés number of 1. Collaborators of these 511 original collaborators have Erdds
number 2, and so on. The Erdés number has been extended to fractional quantities, so that if you
co-authored fifty-seven papers with Erdos, as Andras Sarkdzy, you get the number 1/57. The
Erd6s number for anyone who has no co-authorship with Erdds or with his collaborators, then, is
not 0; rather, it is undefined! A sweeping majority of today’s mathematicians have an Erdds
number below 5 (Buchanan, 2003). The Erdds number project reveals something unique about
family, social, epidemic, and work networks. It has resonance in collaboration research, systems
theory, and network theory.

Buchanan’s (2003) work illustrates how small the world is when it comes to networks;
there are small degrees of separation and a small number such as 5 may not be that small. An
electronic search using a Collaboration Distance tool' on the American Mathematical Society
website reveals that Mark Buchanan, one of the inventors of Small World Network Theory, has
an Erdés number of 5. Consider a current mathematician, an acquaintance of one of the authors,
who works at an African University in a country that Erd6s most likely never visited. Does such
a mathematician have a Erdés number that is bigger than Buchanan’s? The collaboration
distance calculator gives this mathematician an Erdés number of 3 - he co-authored with a
mathematician who co-authored with a co-author of Erd6s. The same African author has an
Albert Einstein number of 5. Erdés and Albert Einstein had one collaborator in common, Ernst

' Available at http://www.ams.org/mathscinet/collaborationDistance.html
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Gabor Strauss, which means that Einstein has an Erdés number of 2. Karl Friederich Gauss
(1777-1855, German), who lived a hundred years before Erdds, has a Erdés number of 4.

Much has been written about Erdos, his trials as a transient worker in the post-World War
II era, his mathematical works, his humorous moments, and what his contemporary Einstein, had
to say about him. Many of his biographies contain elaborate bibliographies (see Babali,
Pomerance, & Vertesi, 1998; Bollobas, 1998; Hoffman, 1998; Seife, 2002). Let us now turn to
lessons for school mathematics drawn from Erdds’s life and work.

Lessons for School Students — Erdds as Inspiration

Fauvel (1991) maintains that biographies of great mathematicians give mathematics a human
face. To tell stories of great mathematicians in classrooms, Fauvel (1991), Liu (2003) and
Bidwell (1993) encourage using drama activities, anecdotal and portrait displays, artifacts of
mathematical works, maps and calendars of mathematicians’ birth places and dates, as well as
outlines of obstacles faced by mathematicians. Using this paper as a resource, teachers may
develop drama activities around the life and mathematical works of Erdds, including his interest
in formulating mathematics problems and his non-stop travel.

Erdos’s biography shows that even theorems already proved and problems already solved
may be revisited so that new, more elegant, and innovative proofs and solutions can be created.
An abbreviated version of Erdds’s story would be a great motivator for many students, especially
gifted students and those fascinated by history. Students who have heard about George Polya and
his four steps in problem solving will be interested to hear that Erdés was born in the same
country - Hungary - only a few decades later. Students may also find themselves drawn to Erdos
because of his unique personality and socio-cultural background.

Erd6s had a unique perspective on life and on mathematics. His work illuminates the
importance of mathematical processes. He is a model for problem posing and collective work.
For Erdds, the process was often as important as the result. To end up with another question or a
conjecture is as interesting as getting a solution to a problem. Erdds had this to say about
problem solving: “A well chosen problem can isolate an essential difficulty in a particular area
serving as a tasty tidbit
supplying a few moments of fleeting enjoyment. Or it might be like an ‘acorn,’ requiring deep
and subtle new insights from which a mighty oak can develop” (Chung & Graham, 1988, p. ix).
Indeed many of Erdds’ simple questions - such as, what happens when you randomly add edges

M

... An innocent looking problem ... Might be like a ‘marshmallow,

to a graph - later spawned theories such as random graphs theory. Many of these theories later
became tools in newer areas such as autocatalytic networks in complexity science

Working in groups, collaborating on projects, and communicating with others are
increasingly valued learning skills in mathematics classrooms (e.g., NCTM, 2000). The story of
Erdos’s life, particularly the development of the Erdos numbers, demonstrates the importance of
collaborative learning and collective work that transcends geographical and historical
boundaries. That Erdés always consulted with colleagues when working on mathematics
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conjectures and proofs shows how he embodied mathematics as a social activity and as a
collective project based on interaction and collaboration.

Biographies of mathematicians might also serve as sources of mathematics problems for
the classroom (Ernest, 1998; Fauvel, 1991). Consider the problem of coloring a complete graph,
such as K4 (a square together with its two diagonals) and bigger polygons randomly with two
colors to explore possible monochromatic polygons. Middle school students may explore the
problem of possible monochromatic subgraphs. Also consider the problem of distribution of
other sequences, such as sequence of even numbers (2, 4, 6, 8, 10, ...) labeled as say E(x). E(x) is
the even counting function used to denote the number of even numbers less than or equal to a
real number that is greater than 1. It follows that E(2) is 1, there being only one even number, 2,
that is less or equal to 2. E(3) is 1, E(4) is 2, E(5) is 2, and so on. E(n)=(0, 1,2, 2,3,3,4,4,5,5
...). What is the nature of the function E(x) and how is it different from or similar to the
distribution of prime numbers? Teachers may guide students to explore more distribution
functions of special numbers such as odd numbers, triangular numbers, exponents of two, and
exponents of three. As well interesting patterns emerge when not only patterns in sequences are
studied but also when patterns in sequences of first differences and second differences are
studied. For elementary school students this might be done as an elementary school focal point
that is later connected to slope and differentiation at high school.

Erdds’s mathematics work was interdisciplinary in nature - he connected geometry to
number theory to probability theory. In a pre-service teacher education classroom that explored
history of mathematics, including biographies of mathematicians, in the context of teaching and
learning, two students - co-authors of this papers - independently chose to focus on Erdds’s
biography. This suggests that Erd6s biography and mathematical works might be of interest to
teachers and students. By using biographies, teachers may demonstrate links between school
mathematics and university mathematics. Examples of links between university and school
mathematics activities include the problems mathematicians pose about elementary mathematics
artifacts, the processes that mathematicians engage in such as generating computation tables and
computational algorithms that elementary school students also engage in. As well, biographies of
mathematicians in general might be a source of illustrations for engaging in school mathematics
in ways that facilitate making connections, non-routine problems solving and exploring big
mathematical ideas. Generally, the use of biographies in teaching, that is more common in
science teaching than in mathematics teaching, according to pre-service teachers, may serve as a
motivation for students to become mathematicians and scientists at a time when fewer and fewer
students are taking this route.

Erdds’s story exemplifies a recent mathematician who participated in the evolution of old
and new fields of mathematical study. Mathematics is not a dead subject; there is much more to
discover and construct. New branches of mathematics are still sprouting, even from elementary
and historical problems.
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Whether it is through his emphasis on conjecturing and problem solving, his
mathematical accomplishments at a young age, his highly collaborative work, or his fascinating
character, Paul Erdos’s biography has the potential to demonstrate key processes in mathematics.

Notes:

The authors wish to thank Khadheeja Ibrahim-Didi for her helpful discussion on ideas to do with small
worlds and degrees of separation.
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