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The famous Fibonacci numbers F),, are defined recursively by Fy, = 0, F; = 1, and F,, =
Fo1+ Fa_o(n > 2). In 1939, Zeckendorff [2] discovered his theorem:

Theorem 1 (Zeckendorf’s theorem) Every positive integer can be uniquely represented
as a sum of non-consecutive Fibonnacci numbers from Fy, F3, Fy,---.

In his proof, Zeckendorf treated the existence and the uniqueness of the representation sep-
arately by induction. In 1969, Andrews [1] gave an elegant proof of the basis representation
theorem:

Theorem 2 (The basis representation theorem) Let k be an integer > 2. Then, for
any positive integer n, there exists a unique representation

n=ag+ak+ak®+---+ak,

where a,. # 0, and where each a; is nonnegative and less than k.
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Most proofs of the basis representation theorem in the literature use induction and treat
the existence part and the uniqueness part separately. Andrews’s proof seems to be the first
one which produces the existence and uniqueness at the same time. We sketch Andrews’s
proof here: Let bi(n) denote the number of representations of n to the base k. If n =
ask® +as_ 1k '+ a,_ok* 2 +---+a.k", where a, # 0, a, # 0, and each a; is nonnegative and
less than k, then n — 1 = a.k® + as_1k* ' + as_ok® 2 +--- +(a, — 1)k + Z:;é k—1)kiisa
representation for n — 1 to the base k. Thus bx(n) < bg(n — 1). Iteration of this inequality
gives 1 < bi(k™) < be(n) < br(1) = 1. And the result follows. :
[t seems that Andrews’s proof has not been paid much attention. The purpose of this note
is to show that Zeckendorf’s theorem follows easily from an argument similar to Andrews’s
sketched in the above. First, we recall some properties about Fibonacci numbers. It is
readily verified by induction that n < F,;; for n > 2, that F,, < F,,;1 (n > 2), and that

(1)

F3+F5+F7‘|“"+F2r,l_]:Fz.n—l, (I722)
Fo+Fy+Fe+---+F,=Fyy—1,(n>1)

Using (1) and Andrews’s argument, we are now in a position to give an new proof of Zeck-

endorf’s theorem.

Proof of Zeckendorf’s theorem. Let R(n) be the number of representations of a
positive integer n as a sum of Fibonacci numbers of the form:

n=Fy + Feg++ 4+ Fp., (2)

where kj g — k; > 2, for j =1,2,---,r — 1, and k; > 2. Our goal is to show that R(n) = 1
for n = 1,2,3,---. The representation (2) is called a Zeckendorf representation. Note that
R(1) = 1. Let n > 2 and suppose that n = F, + Fy, +- - -+ F, is a Zeckendorf representation.
It follows from (1) that

n—1 = (F,-D)+F,+F,+- 4+ F,
P + B 4ot if ky = 2,
= Fs+Fs+--+ Fgya+ Foy + Fpy + -+ Fe, if ki > 2 and is even,
Fa+Fy+ o+ Fy g+ Fea+ Fpy + -+ F, i ky > 2 and is odd,
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is also a Zeckendorf representation of n — 1. Thus we have
R(n) < R(n—1), for n > 2. (3)

Note that (3) is true even if n has no representation. Since n < F,, 4 for n > 2 and since
R(F,41) > 1 for n > 2, it follows from (3) that

1< R(Fo1) << RBRn)<---<R(2)LR(1)=1, for n > 2.

Therefore R(n) =1forn=1,2,3,---. a
We close with the following generalization of the basis representation theorem:

Theorem 3 Lel ag,ay,as,as,--- be an infinite sequence of positive integers By = 1, and
B; = (1+ag)(1+ay)---(1+ai_y) fori > 1. Then, for any positive integer n, there exist
unique nonnegative integers do,dy, ds,ds, - - -, such that

n=dy+diB1+dyBs+dsBs + - +d. B,

where d, #0 and 0 < d; < a;, fori =0,1,2,--- 7.

The proof of Theorem 3 is exactly that of Zeckendorf’s theorem which we presented in the
above, except that the role of (1) is now replaced by the identity:

(1 +2o)(1 +2x1)(1 +22)--+ (1 +2n)
= 14xo+(1+x)x1+ (1 +xo)A+21)x2+--+ (L +20)(1+21) - (1 + Tp—1)Zn-

We leave the details to the interested reader.
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