
The famous Fibonacci numbers Fn are defined recursively by F0 = 0, F1 

Fn-l + Fn_ 2 (n 2 2). In 1939, Zeckendorff [2] discovered his theorem: 

1, and Fn = 

Theorem 1 (Zeckendorf's theorem) Every positive integer can be uniquely represented 

as a sum of non-consecutive Fibonnacci numbers from F2, F3, F4, · · ·. 

In his proof, Zeckendorf treated the existence and the uniqueness of the representation sep­

arately by induction. In 1969, Andrews [1] gave an elegant proof of the basis representation 

theorem: 

Theorem 2 (The basis representation theorem) Let k be an integer 2 2. Then) for 

any positive integer n 1 there exists a unique representation 

where ar =/:- 01 and where each ai is nonnegative and less than k. 
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Most proofs of the basis representation theorem in the literature use induction and treat 

the existence part and the uniqueness part separately. Andrews's proof seems to be the first 

one which produces the existence and uniqueness at the same time. We sketch Andrews's 

proof here: Let bk(n) denote the number of representabons of n to the base k. If n = 

asks+ as-1ks-I + as-2ks-2 + · · · + arkr, where as#- 0, ar #- 0, and each ai is nonnegative and 

less thank, then n- 1 = a8 k 8 + as-1ks- 1 + as-2ks-2 + · · · + (ar- 1)kr + :L:::~~(k- 1)ki is a 

representation for n- 1 to the base k. Thus bk(n) ~ bk(n- 1). Iteration of this inequality 

gives 1 ~ bk(kn) ~ bk(n) ~ bk(1) = 1. And the result follows. 

It seems that Andrews's proof has not been paid much attention. The purpose of this note 

is to show that Zeckendorf's theorem follows easily from an argument similar to Andrews's 

sketched in the above. First, we recall some properties about Fibonacci numbers. It is 

readily verified by induction that n ~ Fn+ 1 for n ~ 2, that Fn < Fn+l (n ;:: 2), and that 

{ 
Fa t- F5 + F1 + · · · + F2n-1 = F2n- 1, (n;:: 2) 

F2 t- F4 + F6 + · · · + F2n = F2n+ 1 - 1, ( n ;:: 1). 
(1) 

Using (1) and Andrews's argument, we are now in a position to give an new proof of Zeck­

endorf's theorem. 

Proof of Zeckendorf's theorem. Let R(n) be the number of representations of a 

positive integer n as a sum of Fibonacci numbers of the form: 

(2) 

where ki+1 - ki ;:: 2, for j = 1, 2, · · ·, r- 1, and k1 ~ 2. Our goal is to show that R(n) = 1 

for n = 1, 2, 3, · · · . The representation (2) is called a Zeckendorf representation. Note that 

R(1) = 1. Let n ~ 2 and uppose that n = Fk1 +Fk2 +· · ·+F~cr is a Zeckendorfrepresentation. 

It follows from ( 1) that 

n- 1 = (Fk1 - 1) + Fk2 + Fk3 + · · · + Fk.,. 

Fk2 + Fk3 + · · · + Fkr if kl = 2, 

F3 + F5 + · · · + Fk1-l + Fk2 f- Fk3 + · · · + Fkr if k1 > 2 and is even, 

F2 + F4 + · · · + Fk1 -1 + Fk2 + Fk3 + · · · + Fkr if k1 > 2 and is odd, 
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is also a Zeckendorf representation of n - 1. Thus we have 

R(n) ~ R(n- 1), for n 2': 2. (3) 

Note that (3) is true even if n has no representation. Since n ~ Fn+l for n 2': 2 and since 

R(Fn+l) 2': 1 for n 2': 2, it follows from (3) that 

1 ~ R(Fn+d ~ · · · ~ R(n) ~ · · · ~ R(2) ~ R(1) = 1, for n 2': 2. 

Therefore R(n) = 1 for n = 1, 2, 3, · · ·. 0 

We close with the following generalization of the basis representation theorem: 

Theorem 3 Let a0 , a1 , a2 , a3 , • • · be an infinite sequence of positive integers Eo = 1, and 

Bi = (1 + a0)(1 + a 1) · · · (1 + ai_ 1) fori 2': 1. Then, for any positive integer n, there exist 

unique nonnegative integers do, d1 , d2 , d3 , · · · , such that 

where d-r # 0 and 0 ~ di ~ ai, fori= 0, 1, 2, · · · , r. 

The proof of Theorem 3 is exactly that of Zeckendorf's theorem which we presented in the 

above, except that the role of (1) is now replaced by the identity: 

(1 + Xo)(1 + x1)(1 + x2) · · · (1 + Xn) 

1 + Xo + (1 + Xo)xl + (1 + Xo)(1 + x1)x2 + · · · + (1 + xo)(l + x1) · · · (1 + Xn-l)Xn · 

We leave the details to the interested reader. 
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