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We introduced in [2] the notion r(G), which is the number of spanning trees of a given 

multigraph G. Two methods of computing r(G) were also presented therein. 

The first method, which is recursive in nature, states that 

r(G) = r(G- e)+ r(G ·e) 

for each edge e = uv in G, where G- e is the multigraph obtained from G by deleting 'e' 

and G · e is the multigraph obtained from G by first deleting all edges joining u and v, 

and then identifying u and v. 

The second method, known as the Kirchhoff's Matrix-Tree Theorem, makes use of the 

notion 'matrix' as shown below (see Theorem 19.1 in [2]). 

Kirchhoff's Matrix-Tree Theorem. For any multigraph G with V(G) ~ { v1 , v2 , • • ·, vn}, 

r(G) is equal to the cofactor of any entry in D(G)-A(G), where A(G) = (ai,j) is the adja-

cency matrix of Gin which ai,j is the number of edges joining vi and Vj and D(G) = (di,j) 

is the degree matrix of G defined by 

d . = { the degree of vi, 
~.J 0, 
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if j = i; 
otherwise. 
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It is clear that T( G) ~ 1 if and only if G is connected; and for a connected multigraph 

G, T(G) = 1 if and only if G is a tree (see Exercise 17.1[2]). Let G be a connected 

multigraph. While T(G) ~ 1, we now look for a good upper bound for T(G). Clearly, 

this problem does not make sense if there is no control on the number of parallel edges 

joining pairs of vertices. Let us thus confine the problem to (simple) graphs and ask: if 

G is a graph of order n, what is the largest value that T(G) can attain? We note that if 

G is a spanning subgraph of a graph H, then T(G):::; T(H) (see Exercise 17.5[2]). It thus 

follows that T(G) :::; T(Kn)· Is there a formula for T(Kn)? 

In this article, our objective is to present a celebrated result, known as Cayley's for­

mula, which counts for T(Kn) for all n ~ 1. 

21 Cayley's Formula 

In 1889, Arthur Cayley, the famous British mathematician, published his paper [1] m 

which he established the following beautiful result: 

Theorem 21.1 For each integer n ~ 2, T(Kn) = nn- 2
• 

Arthur Cayley (1821 - 1895) helped found the modern British school of pure 
mathematics. He was a prolific mathematician and published about 900 re­
search papers in his career. 
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For example, when n = 4, there are 44- 2 ( = 16) different spanning trees of K 4 , as 

shown in Figure 21.1. 

1 2 1 2 1 2 1 2 

K /1 k: ~ 
3 4 3 

1 2 
4 3 4 3 4 

~ 
1 2 1 2 1 2 1 2 

n c s :X: 
3 4 3 4 3 4 3 4 

3 4 
1 1 1 1 2 2 2 2 z :J I>< V1 
3 4 3 4 3 4 3 4 

1 2 1 2 1 2 1 2 u N ><l X 
3 4 3 4 3 4 3 4 

Figure 21.1 

There are many different proofs of Cayley's formula. For instance, the Canadian 

mathematician John W Moon showed ten of them in his paper [3], which was published 

almost 40 years ago. In this and the next section, we shall introduce, by example, the 

ideas of two proofs. 

The first proof is by means of Kirchhoff's Matrix-Tree theorem. We shall consider 

the case when n = 5, and the reader will easily find that the argument can naturally be 

extended to the general case. 

Thus, our objective now is to show that T(K5 ) =53 by applying Kirchhoff's theorem. 

Observe that 

4 0 0 0 0 0 1 1 1 1 \ 

0 4 0 0 0 1 0 1 1 1 
D(K5 ) = 0 0 4 0 0 and A(K5 ) = 1 1 0 1 1 

0 0 0 4 0 1 1 1 0 1 
0 0 0 0 4 1 1 1 1 0 
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Thus 
4 -1 -1 -1 -1 

-1 4 -1 -1 -1 
D(Ks) - A(Ks) = -1 -1 4 -1 -1 

-1 -1 -1 4 -1 
-1 -1 -1 -1 4 

By Kirchhoff's theorem, 

T(K5 ) = the cofactor of the (1, 1) entry of D(K5 )- A(K5 ) 

4 -1 -1 -1 

(-1)1+1 -1 4 -1 -1 
-1 -1 4 -1 
-1 -1 -1 4 

4 -1 -1 -1 
-1 4 -1 -1 
-1 -1 4 -1 
-1 -1 -1 4 

I I 
I I I I 

(21.1) 

We now compute the above determinant by applying the properties of determinant as 

follows: 

Fori= 2, 3, 4, adding row i to row 1 successively on (21.1) results in 

1 1 1 1 

T(Ks) = 
-1 4 -1 -1 
-1 -1 4 -1 
-1 -1 -1 4 

Now, for i = 2, 3, 4, adding row 1 to row i successively on (21.2) yields 

1 1 1 
0 5 0 
0 0 5 

1 

~ = 1 X 5 X 5 X 5. 

0 0 0 5 

We thus arrive at T(K5 ) =53 , as asserted. 

(21.2) 

(21.3) 
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22 Prufer's Bijection 

In this section, we shall prove Cayley's formula (for n = 5 also) by a beautiful combina­

torial method due to Prufer [4]. 

The method is based on the Bijection Principle which has been used in the proof of 

Theorem 18.1. For convenience, denote the vertices of K 5 by 1, 2, 3, 4 and 5. Let A be the 

set of all spanning trees of K 5 and B the set of all sequences (81 , 8 2 , 8 3 ) of length 3, where 

8 1 , 8 2 , 8 3 are in {1, 2, 3, 4, 5} and are not necessarily distinct. The idea is to establish a 

one-one (and onto) correspondence between the set A and the set B which would then 

imply that IAI = IBI. 

How many members (sequences (81, 8 2 , 8 3 )) are there in B? Observe that fori= 1, 2, 3, 

each 8i has 5 choices (namely, 1, 2, 3, 4 or 5) independently. It follows that lEI = 5 · 5 · 5 = 

53 . Thus, the question now is: how to establish an appropriate one-one correspondence 

between A and B? 

In 1918, H. Prufer published a short note [4] in which he gave a new and elegant proof 

of a result on permutations due to Herr Dziobek (1917). His proof (Prufer mentioned in [4] 

that the idea was suggested by Schur) indeed amounts to establishing such an interesting 

one-one correspondence between A and B. We now illustrate this idea for K 5 . 

A spanning tree T of K5 

Figure 22.1 

Consider the spanning tree T shown in Figure 22.1. There are 3 end-vertices, namely 

1, 4, 5 (always in increasing order). The first one is '1'. Which vertex is '1' adjacent to in 

T? The answer is '3'. Let 8 1 = 3. 
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Delete '1' from T and consider the resulting tree T' as shown in Figure 22.2: 

Figure 22.2 

There are 2 end-vertices in T', namely 4, 5. The first one is '4'. Which vertex is '4' 

adjacent to in T'? The answer is '3'. Let 8 2 = 3. 

Delete '4' from T' and consider the resulting tree T" as shown in Figure 22.3: 

\-@ 
® 

Figure 22.3 

There are 2 end-vertices in T", namely 3, 5. The first one is '3', and it is adjacent to '2' 

in T". Let 8 3 = 2. Thus the spanning tree T of K 5 in Figure 22.1 is associated with the 

sequence (81, 8 2 , 8 3 ) = (3, 3, 2). 

Consider the spanning tree T of K 5 shown in Figure 22.4: 

Figure 22.4 
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Following the same procedure, we see that T is associated with the sequence (4, 4, 4). 

Some other examples are shown in Figure 22.5. 

® 
(3,2, 1) (2,2,5) 

Figure 22.5 

Thus, we see that every spanning tree in A is associated with a sequence in B, and it can 

be verified further (see Exercise 22.1) that different spanning trees in A are associated 

with different sequences in B. 

It remains to show that given any sequence in B, there is a spanning tree in A which 

is associated with it. Again, we illustrate it by example. Take a sequence, say, ( 4, 1, 5) 

in B, which is regarded as the sequence of three vertices '4', '1', and '5'. Among the five 

vertices '1, 2, 3, 4, 5' of K 5 , which one is the first vertex not in the sequence? The answer 

is '2'. Join '2' and '4' (the first vertex in the sequence) as shown below: 

Delete '4' from (4, 1, 5) resulting in (1, 5). Delete '2' from '1, 2, 3, 4, 5' resulting in '1, 3, 4, 5'. 

Among these four vertices '1, 3, 4, 5', which one is the first vertex not in (1, 5)? The answer 

is '3'. Join '3' to '1' (the first vertex in (1, 5)), and we have: 

® @ 

® CD 

Delete '1' from (1, 5) resulting in (5). Delete '3' from '1, 3, 4, 5' resulting in '1, 4, 5'. Among 

these three vertices '1, 4, 5', which one is the first vertex not in (5)? The answer is '1'. 
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Join '1' to '5' (the first vertex in (5)). Now we have: 

Delete '5' from (5) resulting in ( ). Delete '1' from '1, 4, 5' resulting in '4, 5'. Finally, we 

join '4' and '5' and arrive at the following spanning tree in A: 

Following the procedure described in the first part, it can be checked easily that the above 

spanning tree of K 5 is indeed associated with the sequence ( 4, 1, 5). 

Take another sequence in B, say (5, 5, 1). Following the same procedure, we obtain 

the following subgraphs of K 5 step by step: 

and arrive at the following spanning tree in A: 

Again, the reader can easily check that this spanning tree is indeed associated with 

the sequence (5, 5, 1) following the procedure described in the first part. 

We thus conclude from the above discussion that there is a one-one correspondence 

between the set A and the set B. Hence, 

as was to be shown. 
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Note. It is interesting to observe that in the sequence (5, 5, 1), '5' appears twice, '1' 

appears once, and '2', '3', '4' do not appear at all, whereas in the spanning tree of K 5 

associated with (5, 5,1), the degree of vertex '5' is 3 (= 2 + 1), the degree of vertex '1' is 

2 ( = 1 + 1), and the degrees of vertices '2', '3' and '4' are all one. As a matter of fact, in 

general, the degree of a vertex 'j' in a spanning tree T of K 5 is one plus the number of 

occurrences of 'j' in the sequence associated with T (see Exercise 22.2). 

Exercise 22.1 Let A and B be defined as above for K 5 . Explain why different spanning 

trees in A are associated with different sequences in B. 

Exercise 22.2 LetT be a spanning tree of K 5 associated with the sequence (s1 , s2 , s3 ) 

as described in the procedure mentioned above. Explain why the degree of a vertex 'j ' in 

Tis one plus the number of occurrences of 'j' in (s1 , s2 , s3 ). 

Exercise 22.3 Prove Cayley's formula for general Kn using (i) Matrix-Tree theorem; 

and (ii) Prufer's one-one correspondence. 

Exercise 22.4 Consider the special complete bipartite graph K(2, r), where r 2:: 1. 

Show that 1(K(2, r)) = r2r- l by (i) applying the Matrix-Tree theorem; and (ii) any other 

method. 

Exercise 22.5 Let G = Kn- e, where e is an edge in Kn. Show that 

1(G) = (n- 2)nn- 3 . 
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