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Competition Corner 

1. (Italian Mathematical Olympiad, 2005) Let h be a positive integer and let an be 
the sequence defined by the following recursion: 

ao = 1 

if an is even 
otherwise 

(For instance, if h = 27, then a1 = 28, a2 = 14, a3 = 7, a4 = 34, a5 = 17, a5 = 44, ... ) 
For which values of h does there exist n(~ 1) such that an = 1? 

2. (Hong Kong Mathematical Olympiad, 2005) In a school there are b teachers and 
c students. Suppose that 

(i) each teacher teaches exactly k students; and 

(ii) for each pair of distinct students, exactly h teaches both of them. 

Show that 
b c(c-1) 
h k(k- 1)" 

3. (Hong Kong Mathematical Olympiad, 2005) On the sides AB and AC of triangle 
ABC, there are points P and Q, respectively, such that LAPC = LAQB = 45°. Let 
the perpendicular line to the side AB through P intersects line BQ at S. Let the 
perpendicular line to the side AC through Q intersects line C P at R. Let D be on the 
side BC such that AD _l BC. Prove that the lines PS, AD, QR meet at a common 
point and that the lines SR and BC are parallel. 

4. (Swedish Mathematical Olympiad, 2004/2005) Assume that 2n (where n ~ 1) 
points are positioned in the plane in such a way that no straight line contains more 
than two of them. Assume further that n of the points are painted blue, whereas the 
rest are painted yellow. Show that there exist n segments, each one of them with one 
blue and one yellow end, such that any of the 2n points is an end of a segment and 
none of the segments intersects another one. 

5. (19th Nordic Mathematical Contest, 2005) The circle C1 is inside the circle C2 
and the circles touch each other at A. A line through A intersects C1 again at B and 
C2 again at C. The tangent to C1 at B intersects C2 at D and E. The tangents of C1 
passing through C touch C1 at F and G. Prove that D, E, F and G are concyclic. 
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6. (Turkish Mathematical Olympiad, 2005) 

(a) For each of the integers k = 1, 2, 3, find an integer n such that the number of 
positive divisors of n 2 

- k is 10. 

(b) Show that the number of positive divisors of n 2
- 4 is not 10 for any value of the 

integer n. 

1. (Silk Road Mathematical Competition, 2005) Let A, B , C be three collinear points 
such that B lies in the segment AC. Let AA' and BB' be parallel lines such that the 
points A' and B' lie on the same side of the line AB, and A', B', Care not collinear. 
Let 0 1 be the centre of the circle passing through the points A, A', C and 0 2 be the 
centre of the circle passing through the points B, B', C. Find all possible values of 
LCAA' if the areas of !:::,.A'CB' and l:::,.01C02 are equal. 

8. (Czech and Slovak Mathematical Olympiad, 2005) An isosceles triangle KLM 
with base K L is given in the plane. Consider two arbitrary circles k and l which are 
externally tangent to each other and are tangent to the lines K M and LM at the 
points K and L, respectively. Find the locus of all points of tangency T of such circles 
k, l. 

9. (Korean Mathematical Olympiad, 2005) Suppose ABC is a triangle with LA = 
90°, LB > LA and 0 is the centre of the circumcircle of !:::,.ABC. Let lA and lB be 
the tangent lines to the circle 0 at the points A and B, respectively, and let BC meet 
lA at S, AC meet lB at D, AB meet DS atE, CE meet lA at T. Also, let P be the 
point on lA such that EP l_ lA, Q(-1- C) be the intersection of CP with the circle 0, 
R be the intersection of QT with the circle 0 and U be the interesection of BR with 
lA. Prove that 

SU · SP SA2 

TU ·TP TA2. 

10. (Korean Mathematical Olympiad, 2005) Find all positive integers m and n such 
that both 3= + 1 and 3n + 1 are divisible by mn. 

I 

( 
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Solutions to the problems of Volume 31 No.2 2004 

1. (Albanian Mathematical Olympiad, 2000) Prove the inequality 

(1 + XI)(1 + X2) · · · (1 + Xn) < 
2
n-1 

- ' where Xi E [1, oo), i = 1, ... , n 

When does equality hold? 

Solution by Zhao Yan. Also solved by Kenneth Tay Jingyi, Wu Jiawei, A. Robert 
Pargeter. 

For any a. b E [1, oc), we have (a- 1)(b- 1) ;:::: 0 or equivalently 2(1 + ab) ;:::: 
(1 + a)(1 +b), with equality if and only if a = 1 or b = 1. Applying this inequality 
repeatedly, we get 

(1 + XI)(1 + X2) · · · (1 + Xn) < 2(1 + ::r1x2)(1 + X3) · · · (1 + Xn) < ... 
1 + X1X2 · · · ::tn 1 + X1X2 · · · Xn 

< 
2n-l(1 + X1X2 · · · Xn) __ .:__ ____ _..:_ = 2n-l 

1 + X1X2 · · · Xn 

with equality if and only if at least one of the elements in each of the pairs 

is equal to 1. This is certainly satisfied when at most one of the Xi's is > 1. Moreover, 
if two of the Xi's, say Xk and xz with k < l, are > 1, then both elements in the pair 
(x1:1:2 ... xz-1, xz) are > 1. Thus equality holds iff Xi = 1 for all i, with at most one 
exception. 

2. (Ukrainian 1\ilathematical Olympiad, 2003) Let n be a positive integer. Some 
2n2 + 3n + 2 cells of a (2n + 1) x (2n + 1) square table are marked. Does there always 
exist one three-cell figure shown below (such figures can be oriented arbitrarily) such 
that all three cells are marked? 

Eb 
Solution by Wu Jiawei. Also solved by Zhao Yan. 

Consider a 2 x (2n + 1) tableT. We call the three-cell figure F. We note that 
any 2 x 2 table will contain F if more than 2 of its cells are marked. 

Claim 1: If the marked cells of T do not contain F, then T has at most 2n + 2 
marked cells. The only way to have 2n + 2 marked cells without F is to marked the 
cells in the odd numbered columns. 

Proof: Divide the first 2n columns into n 2 x 2 subtables and one 1 x 2 column. If 
more than 2n + 2 cells are marked, then by the pigeonhole principle, one of the 2 x 2 
subtables will contain 2 cells and thus will contain F. 
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If exactly 2n + 2 cells are marked without having F, then each of the n 2 x 2 
subtables and the 1 x 2 column must contain 2 marked cells. For this to be possible, 
we can only mark the cells in the odd numbered columns. 

Claim 2: If T does not contain F and has two adjacent marked cells in one of its 
rows, then it can contain at most 2n + 1 marked cells. 

Proof: Suppose the cells in ith and i +1st position of one of the rows are marked. 
Assume, without loss of generality, that i is odd. Then divide the columns other than 
column i, i + 1, i + 2, into 2 x 2 subtables. Consider these n -1 2 x 2 subtables together 
with column i + 2. If there are more than 2n + 1 marked cells, then either column 
i + 2 will contain 2 marked cells or one of the 2 x 2 subtables will contain 3 marked 
cells. Therefore F is present, a contradiction. 

Now we suppose that there are 2n2 + 3n + 2 marked cells in a (2n + 1) x (2n + 1) 
table S and that F is not present. Consider the n 2 x (2n + 1) tables formed by 
the first 2n rows together with the last row. By the pigeonhole principle, one of the 
2 x (2n + 1) tables must contain 2n + 2 marked cells. Since it does not contain F, its 
odd columns are marked by claim 1. 

Now consider the n (2n + 1) x 2 tables formed by the first 2n columns ofT. By 
claim 2, each of these tables can contain at most 2n + 1 marked cells. The last column 
can contain at most 2n + 1 marked cells. Thus the total number of marked cells is 
:::; n(2n + 1) + (2n + 1) = 2n2 + 3n + 1, a contradiction. Thus S must contain F. 

3. (Bulgarian Mathematical Olympiad, 2004) Let I be the incentre of 6ABC and 
let A1, B1, C1 be arbitrary points on the segments AI, BI, CI, respectively. The per­
pendicular bisectors of AA1, BB1, CC1 intersect at A2, B2, C2. Prove that the cir­
cumcentre of A 2B2C2 coincides with the circumcentre of ABC if and only if I is the 
orthocentre of A1B1 C1. 

Solution by Zhao Yan. Let L.BAI = L.CAI = a, L.ABI = L.CBI = (3, L.ACI = 

L.BCI = 1· Then a+ (3 + 1 = 90°. 

A 
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Let A2B2 intersect CI at C3 , B2C2 intersect AI at A3, C2A2 intersect BI at B3, 
A1B1 intersect CI at Cs, B1C1 intersect AI at As, C1A1 intersect BI at Bs. Let 
A4, B4, C4 be points on BC, CA, AB, respectively such that A2A4 _L BC, B2B4 _LAC, 
C2C4 1_ AB. 

Since LAA3C2 = LAC4C2 =goo, A, A3, C4, C2 are concyclic. Similarly C2, C4, B3, B 
are concyclic. Therefore LC4C2A3 = LC4AA3 = a, LC4C2B3 = LC4BB3 = j3. so 
LB2C2A2 =a+ j3. Similarly, LA2B2C2 =a+/, LC2A2B2 = j3 + r· 

Let A2A4 and B2B4 intersect at 0. Since OB2A2 = LOA2B2 =f. Therefore, 
OA2 = OB2, LA20B2 = 180°- 21 = 2(a + j3) = 2LA2C2B2. Consequnetly, 0 is the 
circumcentre of 6.A2B2C2. Similar consideration will show that C2C4 passes through 
0 as well. 

Ifiistheorthocentreof6.AtB1C1, thenA1As _L B1C1, BtBs _L A1C1, CA1Cs _L 

A1B1 and 

Therefore Bt, C1, B, Care concyclic. 

Since A2C2, A2B2 are perpendicular bisectors of BB1 and CC1 , respectively, they 
meet at the circumcentre of B 1C1CB. Therefore A 2 is the circumcentre of B 1C1CB. 
Since BC _L A2A,t, A4 bisects BC. Similarly, B4 bisects AC and C4 bisects AB. 
Therefore 0 is the circumcentre of 6.ABC. Thus 6.ABC and 6.A2B2C2 have the 
same circumcentre 0. 

Now suppose that 6.ABC and 6.A2B2C2 have the same circumcentre 0. Then 
A40, B40. C40 are perpendicular bisectors of BC, CA, AB. 

In 6.BC1 C, A2C3 and A2A4 are perpendicular bisectors of C1 C and BC, respec­
tively. Therefore A2 is the circumcentre of 6.BC1 C. Similarly, A2 is the circumcentre 
of 6.BB1C. Therefore B,B1,C1,C are concyclic. Thus LIC1B 1 = LIBC = j3. Since 
LAsiC1 = LIAC + LICA =a+/, we have LIAsC1 = 180°- LIC1B 1 - LAsiC1 = 
goo. Therefore A1As _L B1C1. Similarly, B1Bs _L A1C1, C1Cs _L B1A1. Therefore I 
is the orthocentre of 6.A1BtC1. 
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4. (Russian Mathematical Olympiad, 2004) The distance between two 5-digit num­
bers a1a2a3a4a5 and b1b2b3b4b5 is the maximal integer i for which ai =I= bi. All the 
5-digit numbers are written down one by one in some order. What is the minimal 
possible sum of distances between adjacent numbers? 

Solution by Zhao Ya.n. Let L be a list of all 5-integers. For each i = 1, 2, 3, 4, 5, let Xi 

be the number of pairs with distance i. We want to find the minimum value of 

Note that XI + X2 + X3 + X4 + X5 = 89999. 

Claim: For each i = 2, 3, 4, .5, Xi + · · · + x 5 2'.: 106-i - 1. 

Proof: Consider the set S of all (6 - i)-digit numbers, where the first digit can 
be 0. Then lSI = 106-i. For each element x E S, let n be the first element in L 
whose final 6- i digits are x. If n is not the first element of L, then the final 6- i 
digits of the number, say m, preceding it in the list L are not x. Thus the distance 
between m and n is at least i. So the number of adjacent pairs with distance at least 
i is 2'.: lSI - 1 = 106

-i- 1. This proves the claim. 

Thus we have 

Therefore 

X2 + X3 + X4 + X5 2'_: 9999 

X3 + X4 + X5 2'_: 999 

X4 + X5 2'_: 99 

X5 2'_: 9 

x 1 + 2x2 + 3x3 + 4x4 + 5x5 2'.: 89999 + 9999 + 999 + 99 + 9 = 101105. 

Next the following list of 5-digit integers shows that this bound can be achieved, 
showing that the answer is 101105. The first number in the list is 10000. If a1a2a3a4a5 
is a number in the list and i is the smallest index such that ai =/= 9, then the next 
number is obtained by replacing ai by ai + 1, a 1 by 1 and a2, ... , ai-l by 0. For 
example, the number 99139 is followed by 10239 and 21111 is floowed by 31111. It 
can be checked easily that x1 = 8000, x 2 = 9000, X3 = 900, X4 = 90 and X5 = 9. 

The solver also noted that the answer would be 111105 if the first digit were 
allowed to be 0. 

5. (Hungarian Mathematical Olympiad, 2002/3) Let n be an integer, n 2'.: 2. We 
denote by an the greatest number with n digits which is neither the sum nor the 
difference of two perfect squares. (a) Determine an as a function of n. (b) Find the 
smallest value of n for which the sum of squares of the digits of an is a perfect square. 
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Solution by Zhao Yan and Kenneth Tay Jingyi. 

Note that k2 
- 0, 1, 4 (mod 8). Thus k2 

- 1!2 0, ±1, ±3, 4 (mod 8) and 
k2 +1!2 0, 1, 2, 4, 5 (mod 8). Thus any integer m 6 (mod 8) cannot be expressed 
as the sum or difference of 2 perfect squares. (a) We claim that 

Case (i) n > 2: 

an = { 1 on - 2 if n > 2 
94 if n = 2 

1011 
- 2 1on-3 103 - 2 

-6 (mod 8) 

Also 10n- 1 = (5 · wn-1 ) 2 - (5. wn-l- 1)2 . 

Case (ii) n = 2: 94 6 (mod 8) and 95 = 482 - 472 , 96 = 252 
- 232 , 97 = 

492 -482 , 98 = 72 + 72 , 99 = 102 - 12 . 

Thus the claim is established. 

(b) For n = 2, 92 + 42 = 97 is not a perfect square. For n > 2, the sum of the 
squares of the digits of an is (n- 1)92 + 82 = 81n- 17. Thus we want to the smallest 
n such that 81n- 17 = k2 . We have k2 64 (mod 81). Thus (k- 8)(k + 8) 0 
(mod 81). Since gcd(k- 8, k + 8) = gcd(k- 8, 16), we have 81 I k + 8 or 81 I k- 8. 
Thus k = 81m ± 8. The smallest possible k = 81- 8 = 73. (We know k-/=- 8.) This 
gives n = 66 as thf' smallest value of n. 

6. (Thai Mathematical Olympiad, 2003) Find all primes p such that p2 + 2543 has 
less than 16 distinct positive divisors. 

Solution by Zhao Yan. When p = 2 and p = 3, p2 + 2543 has 6 and 16 factors, 
respectively. For p > 3, p2 _ 1 (mod 24) since p2 _ 1 (rnod 3) and p2 _ 1 
(mod 8). Thus p2 + 2543 0 (mod 24). 

Case (i) p2 + 2543 = 2a3!3: We have 

But 37 < 2543 < 38
. Thus a + f3 2: 8. Since 24 I p2 + 2543, a 2: 3, f3 2: 1. Therefore 

(a- 1)(/3- 1) 2: 0, i.e., a/3 2: a+ f3- 1. Hence (a+ 1)(/3 + 1) = a/3 +a+ f3 + 1 2: 
2(a + !3) 2: 16. Thus there are at least 16 factors. 

Case (ii) p2 + 2543 = 2a3!3 A for some A such that 3 fA and 2 fA: As before, we 
have a 2: 3 and f3 2: 1. Thus the number of factors is 2: 4 x 2 x 2 = 16. 

Thus the only such prime is p = 2. 

7. (Italian Mathematical Olympiad, 2003/4) Let r and s be two parallel lines and 
P, Q be points on r and s, respectively. Consider the pair (Cp, CQ) where Cp is a 
circle tangent to r at P, CQ is a circle tangent to s at Q and Cp, CQ are tangent 
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externally to each other at some point, sat T. Find the locus ofT when (Cp, CQ) 
varies over all pairs of circles with the given properties. 

We present the combined sol-ution of A. Robert Pargeter, Zhao Yan and W·u Jiawei. 

Case (i): both circles lie between r, s. Iftheir centres are X and Y, then XTY is 
a straight line and it's easy to see that l:::,PXT c:::: l:::,QYT, so that PTQ is a straight 
line. (see figure). 

Conversely, let T be a point on the segment PQ. Let X be the point such that 
X P _L r and X P = XT and Y be the point such that Y Q _L s and Y Q = YT. Then 
it's again easy to see that !:::,PXT c:::: !:::,QYT, so that X, T, Yare collinear. Hence the 
circles with centres X and Y and radius X P and YQ are tangent externally at T. 

Thus the locus ofT is the segment PQ. 

p 

I 
I 

I 
I 

' ' ' I 
I 
\ 
\ 

' ' ' 

Case (ii): Cp lies above r and CQ above s. Let C be the circle with diameter 
PQ. We claim that the locus of T is the part C above the line r. 

Since QY II PX and XTY is a striaght line, we have L.PXT + L.QYT = 180°. 
From this it's easy to see that L.PTQ = goo. Thus T is on C. 

Conversely, let T be a point on the part of C above r. Construct the points X, Y 
such that YQ _L s, XP _L r, YT = YQ and XP = XT. Since L.PTQ =goo and QY II 
P X, we have L.Y QT +LX PT = goo. This in turn implies that L.QTY + L.PT X = goo. 
Thus X, T, Y are collinear. Hence T is the point of common tangency of the circles, 
one with centre X, radius XP and the other with centre Y, radius YQ. 

The other case is symmetrical with (ii). Thus the locus is the segment PQ and 
those parts of the circle on PQ as diameter outside the parallels. 

Note: A. Robert Pargeteralso points out that if we allow the circles to touch 
internally, then the locus is the line PQ produced and the whole of the circle C. 

8. (Estonian Mathematical Olympiad, 2003/4) (a) Does there exist a convex quadri­
lateral ABC D satisfying the following conditions: 

(1) ABCD is not cyclic; 

(2) the sides AB, BC, CD and DA have pairwise different lengths; 

(3) the circumradii of the triangles ABC, BAD and BCD are equal?* 

(b) Does there exist such a non-convex quadrilateral? 
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Solution by Wu Jia-wei. 

(a) Suppose such a quadrilateral exists. We first note that for any L.>XY Z, its 
circumradius R is given by (XY sin Z) /2. Since the circumradii of triangles BAD 
and BCD are equal, we have BDsinBAD = BDsinBCD and thus sinBAD = 
DsinBCD. But ABCD is not cyclic. Therefore LEAD= LBCD = 180°. Since the 
circumradii of triangles ABC and BAD are equal, we have BAsinBCA = BAsinBDA 
and thus sinBCA = DsinBDA. But LBCA #- LBDA. Thus LBCA + LBDA = 
180°. Now in L.>ABD, we have 

LEAD+ LBDA = LBCD + LBDA > LBCA + LBDA = 180° 

a contradiction (LBCD > LBCA by the convexity of ABCD.) 

(b) Such a non-convex quadrilateral exists. Draw three equal circles which meet 
at a common point B. Let A, C, D be points common to two of the circles. Then 
ABCD is the desired quadrilateral. 

9. (Indian Mathematical Olympiad, 2004) Let S denote the set of all 6-tuples 
(a, b, c, d, e, f) of positive integers such that a2 + b2 + c2 + d2 + e2 = P. Consider the 
set 

T = {abcdef: (a,b,c,d,e,f) E S}. 

Find the greatest common divisor of all the members ofT. 

Solu.tion by Zhao Yan. Also solved by Kenneth Tay Jingyi. 

Let d be the required greatest common divisor. Note that (1, 1, 1, 2, 3, 4) E S. 
Thus 24 E T. Hence d 124. 

Let (a, b, c, d. e, f) E S. if 3 f abcdef, then a2 + · · · + e2 -5-2- f 2 (mod 3), 
a contradiction. Thus 3 I abcdef. 

Let 2m be the highest power of 2 that divides abcde. First note that, modulo 8, 

2- { 1 
n = 0,4 

If m = 0, then a2 + · · · + e2 5 J2 

If m = 1, then a2 + · · · + e2 0 j 2 

if n is odd 
if n is even 

(mod 8), a contradiction. Thus m #- 0. 

(mod 8). Thus 41 f and 81 abcdef. 

If m = 2, and exactly one of a, b, c, d, e is even, then f is even as well and so 
8 I abcdef. 
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If m = 2 and exactly two of a, b, c, d, e is even, then a2 + · · · + e2 

(mod 8), a contradiction. 

So in all cases, we have 8 I abcdef. So d = 24. 

3 

10. (Ukrainian Mathematical Olympiad, 2004) Let A 1 , A 2 , ... , A 2004 be the vertices 
of a convex 2004-gon(i.e., a polygon with 2004 sides). Is it possible to mark each side 
and each diagonal of the polygon with one of 2003 colours in such a way that the 
following two conditions hold: 

(1) there are 1002 segments of each colour; 

(2) if an arbitrary vertex and two arbitrary colours are given, one can start from 
this vertex and, using segments of these two colours exclusively, visit every other 
vertex only once? 

Solntion by the editor. The actual location of the vertices are not important. The 
problem is about colouring the edges of the complete graph on n vertices, n even. We 
shall place vertices A1 , ... , An-I evenly on the circumference of a circle and An at the 
centre. 

Colour the edge AnAi and all the edges perpendicular to it with colour i. This 
certainly satisfies condition (1). To satisfy condition (2), we need to show that for 
any two colours i, j, the edges with these two colours form a cycle. (The figure below 
shows for n = 6, the edges with colours 1, 2, 3. It's easy to see that any two of the 
three sets of edges form a cycle. 

Without loss of generality, we only need to show this for the case of colours 1 and i. 
In the subgraph formed by these two sets of edges, every vertex is of degree 2. Thus it 
is the union of edge disjoint cycles. To show that it is a single cycle, we only need to 
show that the subgraph is connected. For any vertex Aa, the edge AaA2j-a, (here the 
subscripts are taken mod n- 1), is perpendicular to AnAj. Thus it has colour j. Thus 
the edge AaA2-a is of colour 1 and the edge A2-aA2i-2+a is of colour i. Thus Aa is 
connected to A 2(i-l)+a· Hence A 1 is connected to A 2p(i-l)+l1 p = 1, ... , n- 2. But 
these vertices are distinct since 2j + 1 2k + 1 (mod n- 1) implies that 2(j- k) 0 
(mod n- 1). But n- 1 is odd. Therefore j = k if they are both :::;: n- 1. Hence the 
subgraph is connected are required. 
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