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Competition Corner

1. (Italian Mathematical Olympiad, 2005) Let h be a positive integer and let a,, be
the sequence defined by the following recursion:

(LoZl

. = if a,, is even
A 1 = -~ ¢
ok an + h otherwise

(For instance, if h = 27, then a; = 28,a2 = 14,a3 = 7,a4 = 34,a5 = 17,a6 = 44,...)
For which values of h does there exist n(> 1) such that a,, = 17

2. (Hong Kong Mathematical Olympiad, 2005) In a school there are b teachers and
¢ students. Suppose that

(i) each teacher teaches exactly k students; and
(ii) for each pair of distinct students, exactly h teaches both of them.

Show that
b c(c—1)

h  k(k—1)

3. (Hong Kong Mathematical Olympiad, 2005) On the sides AB and AC of triangle
ABC, there are points P and @, respectively, such that ZAPC = ZAQB = 45°. Let
the perpendicular line to the side AB through P intersects line BQ) at S. Let the
perpendicular line to the side AC through @ intersects line CP at R. Let D be on the
side BC' such that AD 1 BC. Prove that the lines PS, AD, QR meet at a common
point and that the lines SR and BC' are parallel.

4. (Swedish Mathematical Olympiad, 2004/2005) Assume that 2n (where n > 1)
points are positioned in the plane in such a way that no straight line contains more
than two of them. Assume further that n of the points are painted blue, whereas the
rest are painted yellow. Show that there exist n segments, each one of them with one
blue and one yellow end, such that any of the 2n points is an end of a segment and
none of the segments intersects another one.

5. (19th Nordic Mathematical Contest, 2005) The circle C; is inside the circle Cy
and the circles touch each other at A. A line through A intersects C; again at B and
C, again at C. The tangent to C; at B intersects C, at D and E. The tangents of C;
passing through C touch C; at F' and G. Prove that D, E, F and G are concyclic.
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6. (Turkish Mathematical Olympiad, 2005)

(a) For each of the integers k = 1,2, 3, find an integer n such that the number of
positive divisors of n? — k is 10.

(b) Show that the number of positive divisors of n? — 4 is not 10 for any value of the
integer n.

7. (Silk Road Mathematical Competition, 2005) Let A, B, C be three collinear points
such that B lies in the segment AC. Let AA’ and BB’ be parallel lines such that the
points A’ and B’ lie on the same side of the line AB, and A’, B/, C are not collinear.
Let O; be the centre of the circle passing through the points A, A’,C and Os be the
centre of the circle passing through the points B, B’,C. Find all possible values of
ZCAA if the areas of AA'CB’ and AO1COs are equal.

8. (Czech and Slovak Mathematical Olympiad, 2005) An isosceles triangle K LM
with base KL is given in the plane. Consider two arbitrary circles k and [ which are
externally tangent to each other and are tangent to the lines KM and LM at the

points K and L, respectively. Find the locus of all points of tangency 7" of such circles
k1.

9. (Korean Mathematical Olympiad, 2005) Suppose ABC' is a triangle with ZA =
90°, ZB > ZA and O is the centre of the circumcircle of AABC'. Let l4 and I be
the tangent lines to the circle O at the points A and B, respectively, and let BC' meet
la at S, AC meet lp at D, AB meet DS at E, CE meet l4 at T. Also, let P be the
point on l4 such that EP 1[4, Q(# C) be the intersection of C' P with the circle O,
R be the intersection of QT with the circle O and U be the interesection of BR with
l 4. Prove that

SU-SP  SA?

TU-TP  TAY

10. (Korean Mathematical Olympiad, 2005) Find all positive integers m and n such
that both 3™ + 1 and 3™ + 1 are divisible by mn.
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Solutions to the problems of Volume 31 No.2 2004

1. (Albanian Mathematical Olympiad, 2000) Prove the inequality

I+z)(1+z9) - (1+x,)

<2" ! ‘wherez; €[1,00),i=1,...,n
14+z129 - 2
When does equality hold?
Solution by Zhao Yan. Also solved by Kenneth Tay Jingyi, Wu Jiawei, A. Robert ‘

Pargeter.

For any a,b € [1,00), we have (a — 1)(b — 1) > 0 or equivalently 2(1 + ab) >
(1 4+ a)(1 + b), with equality if and only if a = 1 or b = 1. Applying this inequality
repeatedly, we get

I+z)(1+z2) -1+ x,) 5 21+ z122)(1 +23) - - - (1 + x)

1+ x129 -2 o l4+z129° -2, ¥
ganl (1 0 i o o R Jn) S
o 14+ 2120 2

with equality if and only if at least one of the elements in each of the pairs

is equal to 1. This is certainly satisfied when at most one of the z;’s is > 1. Moreover,
if two of the x;’s, say xr and z; with k& < [, are > 1, then both elements in the pair
(122 ... x1—1,21) are > 1. Thus equality holds iff z; = 1 for all ¢, with at most one
exception.

2. (Ukrainian Mathematical Olympiad, 2003) Let n be a positive integer. Some
2n? +3n+ 2 cells of a (2n + 1) x (2n+ 1) square table are marked. Does there always
exist one three-cell figure shown below (such figures can be oriented arbitrarily) such
that all three cells are marked?

Solution by Wu Jiawei. Also solved by Zhao Yan.

Consider a 2 x (2n + 1) table T. We call the three-cell figure F. We note that
any 2 x 2 table will contain F' if more than 2 of its cells are marked.

Claim 1: If the marked cells of T do not contain F', then T' has at most 2n + 2
marked cells. The only way to have 2n + 2 marked cells without F is to marked the
cells in the odd numbered columns.

Proof: Divide the first 2n columns into n 2 x 2 subtables and one 1 x 2 column. If

more than 2n + 2 cells are marked, then by the pigeonhole principle, one of the 2 x 2
subtables will contain 2 cells and thus will contain F'.
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If exactly 2n + 2 cells are marked without having F, then each of the n 2 x 2
subtables and the 1 x 2 column must contain 2 marked cells. For this to be possible,
we can only mark the cells in the odd numbered columns.

Claim 2: If T' does not contain F and has two adjacent marked cells in one of its
rows, then it can contain at most 2n + 1 marked cells.

Proof: Suppose the cells in ith and i+ 1st position of one of the rows are marked.
Assume, without loss of generality, that ¢ is odd. Then divide the columns other than
column ¢,14 1,7+ 2, into 2 x 2 subtables. Consider these n—1 2 x 2 subtables together
with column i + 2. If there are more than 2n + 1 marked cells, then either column
© + 2 will contain 2 marked cells or one of the 2 x 2 subtables will contain 3 marked
cells. Therefore F is present, a contradiction.

Now we suppose that there are 2n? + 3n + 2 marked cells in a (2n4 1) x (2n+1)
table S and that F' is not present. Consider the n 2 x (2n + 1) tables formed by
the first 2n rows together with the last row. By the pigeonhole principle, one of the
2 X (2n + 1) tables must contain 2n + 2 marked cells. Since it does not contain F, its
odd columns are marked by claim 1.

Now consider the n (2n + 1) x 2 tables formed by the first 2n columns of 7. By
claim 2, each of these tables can contain at most 2n+ 1 marked cells. The last column
can contain at most 2n + 1 marked cells. Thus the total number of marked cells is
<nn+1)+ (2n+1) =2n% + 3n+ 1, a contradiction. Thus S must contain F.

3. (Bulgarian Mathematical Olympiad, 2004) Let I be the incentre of AABC and
let A, By, C be arbitrary points on the segments AI, BI, CI, respectively. The per-
pendicular bisectors of AA;, BB, CC, intersect at As, By, Cy. Prove that the cir-
cumcentre of A, B>C5 coincides with the circumcentre of ABC if and only if I is the
orthocentre of A;B1C;.

Solution by Zhao Yan. Let ' ZBAI = (CAl =q, ZABI = ZCBI = 3, LACI =
£ZBCI =7~. Then a+ 8+ v = 90°.
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Let A3 B, intersect C'I at C3, BoC, intersect AI at Az, CoAs intersect BI at Bs,
A, B, intersect CI at Cs, B;C; intersect AI at As, C1 A, intersect BI at Bs. Let
Ay, B4, C4 be points on BC,C A, AB, respectively such that As A, | BC, BoB, 1 AC,
CyCy L AB.

Since LAA3Cy = LAC,Cy =90°, A, A3, Cy, Cs are concyclic. Similarly Cy, Cy, B3, B
are concyclic. Therefore ZC4CyA3 = LC4AA; = o, LC1C3B3 = ZCyBB3 = 3. so
4BQC-_7A2 =+ /3 Sil’nilarly, ZA?_BQCQ = a+ Y ZCQAQBQ = /j o

Let A3 A4 and BB, intersect at O. Since OBy As = ZOA3By = v. Therefore,
OA; = OBy, ZA;0B; = 180° — 2y = 2(a+ ) = 2£A2C3B;. Consequnetly, O is the
circumeentre of AA; BoCy. Similar consideration will show that CyC)y passes through
O as well.

If I is the orthocentre of AA]B]C[, then A1A5 L BlCl, BlBr) i A]Cl, CA105 2
A,B; and

LIC1By =90° — LC1TA; =90° — LTIAC — LZICA=90° —a—~v == 4£BBC.

Therefore B,,C}, B, C are concyclic.

Since A5C5, Ay Bs are perpendicular bisectors of BB, and CCY, respectively, they
meet at the circumcentre of B;C;CB. Therefore A, is the circumcentre of B,C,CB.
Since BC L AsA,, Ay bisects BC. Similarly, B4 bisects AC and Cj bisects AB.
Therefore O is the circumcentre of AABC. Thus AABC and AA,;B>C5 have the

same circumcentre O.

Now suppose that AABC and AA;B>C5 have the same circumcentre O. Then
A40, B4,O, C40 are perpendicular bisectors of BC,CA, AB.

In ABC,C, AyC35 and Az A, are perpendicular bisectors of C1C and BC, respec-
tively. Therefore A, is the circumcentre of ABCC. Similarly, As is the circumcentre
of ABB;C. Therefore B, B;,C1,C are concyclic. Thus £IC1B; = £IBC = 3. Since
414.5101 = lIflC ~+ ZICA = a -+ Y, We have ZIAaC'l = 180° — ZIC]BL a 4145[01 =
90°. Therefore A; A5 | BC,. Similarly, B1Bs 1 A,Cy, C1Cs 1. B1A,. Therefore I
is the orthocentre of AA;B,C,.
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4. (Russian Mathematical Olympiad, 2004) The distance between two 5-digit num-
bers a1asasasas and bybabsbsbs is the maximal integer ¢ for which a; # b;. All the
5-digit numbers are written down one by one in some order. What is the minimal
possible sum of distances between adjacent numbers?

Solution by Zhao Yan. Let L be a list of all 5-integers. For each ¢ = 1,2,3,4,5, let x;
be the number of pairs with distance i. We want to find the minimum value of

, 1 + 229 + 323 + 414 + HT5.

Note that z1 + x2 + 3 + T4 + 5 = 89999.

Claim: For each i = 2,3,4,5, 3+ --- + x5 > 1057% — 1.

Proof: Consider the set S of all (6 — i)-digit numbers, where the first digit can
be 0. Then |S| = 10°7*. For each element x € S, let n be the first element in L
whose final 6 — 4 digits are x. If n is not the first element of L, then the final 6 — i
digits of the number, say m, preceding it in the list L are not x. Thus the distance
between m and n is at least i. So the number of adjacent pairs with distance at least
iis > |S| —1 = 10°"* — 1. This proves the claim.

Thus we have
T2 + 3 + X4 + 25 = 9999
T8 +xa+xs = 999
x4 +x5 > 99
T5 > 9
Therefore

Ty + 229 + 323 + 424 + Hxs > 89999 + 9999 + 999 + 99 + 9 = 101105.

Next the following list of 5-digit integers shows that this bound can be achieved,
showing that the answer is 101105. The first number in the list is 10000. If ayazazaqas
is a number in the list and 4 is the smallest index such that a; # 9, then the next
number is obtained by replacing a; by a; + 1, a; by 1 and as,...,a;—; by 0. For
example, the number 99139 is followed by 10239 and 21111 is floowed by 31111. It
can be checked easily that z; = 8000, x5 = 9000, z3 = 900, z4 = 90 and x5 = 9.

The solver also noted that the answer would be 111105 if the first digit were
allowed to be 0.
5. (Hungarian Mathematical Olympiad, 2002/3) Let n be an integer, n > 2. We
denote by a,, the greatest number with n digits which is neither the sum nor the
difference of two perfect squares. (a) Determine a,, as a function of n. (b) Find the
smallest value of n for which the sum of squares of the digits of a,, is a perfect square.
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Solution by Zhao Yan and Kenneth Tay Jingyi.

_ Note that k* = 0,1,4 (mod 8). Thus k? — = 0,£1,43,4 (mod 8) and
k24¢*=0,1,2,4,5 (mod 8). Thus any integer m =6 (mod 8) cannot be expressed
as the sum or difference of 2 perfect squares. (a) We claim that

= :{10"’—2 ifn>2
A 94 ifn=2

Case (i) n > 2:

100 == 10 2
=6 (mod 8)

Also 10" — 1= (5-10""1)2 - (5. 107! —1)2.

Case (i) n = 2: 94 =6 (mod 8) and 95 = 482 — 472, 96 = 252 — 232, 97 =
497 — 482, 98 = 72 + 72, 99 = 10% — 12.

Thus the claim is established.

(b) For n = 2, 9% + 4% = 97 is not a perfect square. For n > 2, the sum of the
squares of the digits of a,, is (n — 1)9% + 8% = 81n — 17. Thus we want to the smallest
n such that 81n — 17 = k?. We have k> = 64 (mod 81). Thus (k — 8)(k +8) =0
(mod 81). Since ged(k — 8,k + 8) = ged(k — 8,16), we have 81 | k+8 or 81 | k — 8.
Thus k = 81m + 8 The smallest possible k = 81 — 8 = 73. (We know k # 8.) This
gives n = 66 as the smallest value of n.

6. (Thai Mathematical Olympiad, 2003) Find all primes p such that p? + 2543 has
less than 16 distinct positive divisors.

Solution by Zhao Yan. When p = 2 and p = 3, p? + 2543 has 6 and 16 factors,
respectively. For p > 3, p> = 1 (mod 24) since p> = 1 (mod 3) and p* = 1
(mod 8). Thus p? + 2543 =0 (mod 24).

Case (i) p* + 2543 = 2*3P: We have

)

543 < p® + 2543 = 2°38 < 3218,

But 3”7 < 2543 < 3%. Thus o + 8 > 8. Since 24 | p® + 2543, o > 3, # > 1. Therefore
(a—1)(B—-1)>0,ie,a8>a+ -1 Hence (a+1)(B+1)=af+a+F+1>
2(a+ () > 16. Thus there are at least 16 factors.

Case (ii) p? + 2543 = 23 A for some A such that 3{ A and 2 { A: As before, we
have a > 3 and 8 > 1. Thus the number of factors is > 4 x 2 x 2 = 16.

Thus the only such prime is p = 2.

7. (Italian Mathematical Olympiad, 2003/4) Let r and s be two parallel lines and
P, @ be points on r and s, respectively. Consider the pair (Cp,Cq) where Cp is a
circle tangent to r at P, Cq is a circle tangent to s at @ and Cp,Cq are tangent
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externally to each other at some point, sat T. Find the locus of T" when (Cp, Cg)
varies over all pairs of circles with the given properties.

We present the combined solution of A. Robert Pargeter, Zhao Yan and Wu Jiawei.

Case (i): both circles lie between r, s. Iftheir centres are X and Y, then XTY is
a straight line and it’s easy to see that APXT ~ AQYT, so that PT(Q is a straight
line.(see figure).

} Conversely, let T' be a point on the segment PQ. Let X be the point such that
XP 1 rand XP = XT and Y be the point such that YQ | sand YQ =YT. Then
it’s again easy to see that APXT ~ AQYT, so that X, T,Y are collinear. Hence the
circles with centres X and Y and radius X P and Y () are tangent externally at 7.

Thus the locus of T is the segment P(Q).

£

Case (ii): Cp lies above r and Cg above s. Let C be the circle with diameter
P@Q. We claim that the locus of T is the part C' above the line r.

Since QY || PX and XTY is a striaght line, we have ZPXT + ZQYT = 180°.
From this it’s easy to see that ZPT(Q = 90°. Thus T is on C.

Conversely, let T be a point on the part of C' above r. Construct the points X,Y
such that YQ | s, X P ». YT =¥0 and X P =XT', Since ZPT() =90° and QY |
PX, we have /Y QT+ /X PT = 90°. This in turn implies that ZQTY +/PTX = 90°.
Thus X,T,Y are collinear. Hence T is the point of common tangency of the circles,
one with centre X, radius X P and the other with centre Y, radius Y Q.

The other case is symmetrical with (ii). Thus the locus is the segment PQ and
those parts of the circle on PQ as diameter outside the parallels.

Note: A. Robert Pargeteralso points out that if we allow the circles to touch
internally, then the locus is the line PQ) produced and the whole of the circle C.

8. (Estonian Mathematical Olympiad, 2003/4) (a) Does there exist a convex quadri-
lateral ABC D satisfying the following conditions:

(1) ABCD is not cyclic;
(2) the sides AB, BC, CD and DA have pairwise different lengths;
(3) the circumradii of the triangles ABC, BAD and BCD are equal?*

(b) Does there exist such a non-convex quadrilateral?
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Solution by Wu Jiawes.

(a) Suppose such a quadrilateral exists. We first note that for any AXY Z, its
circumradius R is given by (XY sinZ)/2. Since the circumradii of triangles BAD
and BCD are equal, we have BDsin BAD = BDsin BCD and thus sin BAD =
Dsin BCD. But ABCD is not cyclic. Therefore ZBAD = ZBCD = 180°. Since the
circumradii of triangles ABC and BAD are equal, we have BAsin BCA = BAsin BDA
and thus sin BCA = Dsin BDA. But ZBCA # ZBDA. Thus ZBCA+ ZBDA =
180°. Now in AABD, we have

£BAD + /BDA =/BCD+ /BDA > /BCA + ZBDA = 180°

a contradiction (£/BCD > ZBCA by the convexity of ABCD.)

(b) Such a non-convex quadrilateral exists. Draw three equal circles which meet
at a common point B. Let A,C, D be points common to two of the circles. Then
ABCD is the desired quadrilateral.

9. (Indian Mathematical Olympiad, 2004) Let S denote the set of all 6-tuples
(a,b,c,d, e, f) of positive integers such that a® + b? + ¢® + d* + €? = f2. Consider the
set

T = {abcdef : (a,b,c,d,e, f) € S}.
Find the greatest common divisor of all the members of 7.
Solution by Zhao Yan. Also solved by Kenneth Tay Jingyi.

Let d be the required greatest common divisor. Note that (1,1,1,2,3,4) € S.
Thus 24 € T. Hence d | 24.

Let (a,b,c,d,e, f) € S. if 3{abcdef, thena® +---+e2=5=2= f? (mod 3),
a contradiction. Thus 3 | abedef.

Let 2™ be the highest power of 2 that divides abede. First note that, modulo &,

s 1 if n is odd
" 7 10,4 ifniseven

Ifm=0,thena®+---+e?=5=f? (mod 8), a contradiction. Thus m # 0.
Ifm=1,thena®+---+e=0=f> (mod8). Thus 4| f and 8 | abedef.

If m = 2, and exactly one of a,b,¢,d, e is even, then f is even as well and so

8 | abedef .
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If m = 2 and exactly two of a,b,c,d,e is even, then a®> + ---+e2 =3 = f
(mod 8), a contradiction.

So in all cases, we have 8 | abedef. So d =

10. (Ukrainian Mathematical Olympiad, 2004) Let Ay, Ao, ..., As004 be the vertices
of a convex 2004-gon(i.e., a polygon with 2004 sides). Is it possible to mark each side
and each diagonal of the polygon with one of 2003 colours in such a way that the
following two conditions hold:

(1) there are 1002 segments of each colour;

(2) if an arbitrary vertex and two arbitrary colours are given, one can start from
this vertex and, using segments of these two colours exclusively, visit every other
vertex only on(t‘?

Solution by the editor. The actual location of the vertices are not important. The
problem is about colouring the edges of the complete graph on n vertices, n even. We
shall place vertices Ay, ..., A,—1 evenly on the circumference of a circle and A,, at the
centre.

Colour the edge A, A; and all the edges perpendicular to it with colour i. This
certainly satisfies condition (1). To satisfy condition (2), we need to show that for
any two colours 4, j, the edges with these two colours form a cycle. (The figure below
shows for n = 6, the edges with colours 1, 2, 3. It’s easy to see that any two of the
three sets of edges form a cycle.

A
e
e B S
A A
e P o

Without loss of generality, we only need to show this for the case of colours 1 and i.
In the subgraph formed by these two sets of edges, every vertex is of degree 2. Thus it
is the union of edge disjoint cycles. To show that it is a single cycle, we only need to
show that the subgraph is connected. For any vertex A,, the edge A,As;_,, (here the
subscripts are taken mod n— 1), is perpendicular to A, A4;. Thus it has colour j. Thus
the edge A, A2, is of colour 1 and the edge As_,A2;—244 is of colour i. Thus A, is
connected to Ag(;_1)4.- Hence Ay is connected to Agpi—1y41, p=1,...,n — 2. But
these vertices are distinct since 2j+1 = 2k+1 (mod n—1) implies that 2(j — k) =0
(mod n — 1). But n— 1 is odd. Therefore j = k if they are both < n — 1. Hence the
subgraph is connected are required.
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