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17 The Number of Spanning Trees 

Let G be a connected multigraph of order n. A spanning tree of G is a spanning subgraph 

of G and is itself a tree. Thus, every spanning tree of G is of size n - 1. The concept of 

spanning trees was introduced in [1], and we also discussed therein its applications to the 

unfolding of 3-D folded structures and the one-way street problem. 

Given a connected multigraph G, we know (Theorem 15.1 in [1]) that G contains a 

spanning tree. Certainly, we are not just content with this answer. You may wish to ask: 

how many spanning trees could G contain? We shall study this problem in this article. 

In what follows, unless otherwise stated, G is a connected multigraph of order n. For 

convenience, we shall denote by T( G) our key quantity, namely, the number of different 

spanning trees of G. However, before we proceed, we need to clarify what it means by 

saying that two spanning trees of G are different. Let T1 and T2 be two spanning trees of 

G. We say that T1 is different from T2 if there exists an edge of G which appears in T1 

but not in T2 (or vice versa). For instance, of the multigraph G of Figure 17.1, 
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Figure 17.1 
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the following two spanning trees T1 and T2 , though isomorphic, are regarded as different , 

since the edge e1 of G appears in T1 but not in T2. 

Vu~y Tj: i - -

Indeed, there are exactly six different spanning trees of G (besides T1 and T2 , the other 

four are shown in Figure 17.2). Thus, T(G) = 6. 

Figure 17.2 

To end this section, let us give some observations and examples. 

(1) If H is a disconnected multigraph, then T(H) = 0. Thus , for any multigraph H , 

T(H) 2:: 1 if and only if H is connected. 

(2) If H is a tree , then H itself is its only spanning tree, and so T(H) = 1. Indeed, let 

H be a multigraph. Then T(H) = 1 if and only if His a tree (see Exercise 17.1). 

(3) For the cycle Cn of order n, where n 2:: 2, T(Cn) = n (see Exercise 17.2) . 

( 4) Let H1 and H 2 be two multigraphs with two specified vertices w1 and w2 respectively. 

Denote by H1 • H 2 the multigraph obtained from H 1 and H 2 by identifying w1 and 

w2 as shown in Figure 17.3. Then (see Exercise 17.4) 

Figure 17.3 
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Exercise 17.1 Let H be a multigraph. Show that T(H) = 1 if and only if H is a tree. 

Exercise 17.2 Show that T(Cn) = n for each n :2: 2. 

Exercise 17.3 Consider the following multigraph G: 

Evaluate T( G) by listing all the different spanning trees of G. 

Exercise 17.4 Let H1 and H2 be two multigraphs. Show that 

where H1 • H2 is the multigraph defined in (4) above. 

Exercise 17.5 Let G be a connected multigraph. Show that 

(i) if H is a spanning submultigraph of G, then T(H) :::; T(G)i and more generally, 

(ii) if H is a submultigraph of G, then T(H) :::; T(G). 

18 A Recursive Formula 

Given a multigarph G, one can imagine that it is by no means a simple task to compute 

T( G) if the order or size of G is reasonably big. Is there any systematic way which enables 

us to enumerate T(G) at least step by step? In what follows, we shall introduce a method, 

which is recursive in nature, to compute T( G). 

Before we proceed, we need to introduce a way of forming a new multigraph from the 

given G with a specific edge. Thus suppose that e = uv is a specific edge in G. Let us 

denote by G • e the multigraph obtained from G by first deleting all edges joining u and 

v, and then identifying u and v. We note that the order of G • e is one less than that of 

G and the size of G • e is always less than that of G. An example is shown in Figure 18.1. 
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Recall that G- e is the multigraph obtained by deleting e from G. Thus, if G is the 

graph with a specific edge e as shown in (a) of Figure 18.2, then G- e and G • e are 

shown in (b) and (c) of the figure respectively. 

8 
(a) G (b) G- e (c) G· e 

Figure 18.2 

Let us list all the spanning trees of G, G- e and G • e respectively in the three columns 

of the following table: 

v v 
0 0 
v v 
0 0 
-E-- ~ 
7 s 
--7 ~ 
~ 2 

/ 
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We note that 

(1) T(G) = T(G- e)+ T(G • e); 

( 2) the four spanning trees of G - e are same as the first four spanning trees of G; 

(3) there is a one-one correspondence between the four spanning trees of G • e and the 

last four spanning trees of G (see Exercise 18.1). 

With this in mind, we are now in a position to establish the following result: 

Theorem 18.1 Let G be any multigraph andean edge in G. Then 

T(G) = T(G- e)+ T(G • e). 

Proof Let A be the set of spanning trees of G that contain the given edge e and let 

B be the set of spanning trees of G that do not contain e. Then there is a one-one 

correspondence between A and the set of spanning trees of G • e (see Exercise 18.1), and, 

evidently, B is the same as the set of spanning trees of G - e . Thus, 

T(G • e)= JAJ and T(G- e)= JBJ, 

and so T(G) = JAJ + JBJ = T(G • e)+ T(G- e), as was to be shown. D 

Given G, both G -e and G•e are either of smaller order or of smaller size, as compared 

to G. Thus, by applying Theorem 18.1 successively, the enumeration of T(G) is reduced 

to the computations of T(H)'s, where H's are multigraphs of much smaller order or size, 

which are certainly much easier. An illustration is given below. 

Example 18.1 Consider the following graph. 

G: 

By applying Theorem 18.1 repeatedly, we have: 

----~-~ 
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<C <I> 
H2 

Note that T(H1 ) = 4 and T(H2 ) = 3 (see Exercises 17.2 and 17.3) while T(H3 ) = 8 as 

shown at the beginning of this section. We thus conclude that T( G) = 4 + 3 + 8 = 15. 

Remark: The value of T( G) obtained by applying Theorem 18.1 is independent of the 

choice of the sequence of edges. 

Exercise 18.1 Let G be a connected multigraph and e an edge in G. Establish a one­

one correspondence between the set of spanning trees of G that contain e and the set of 

spanning trees of G • e . 

Exercise 18.2 Evaluate T( G) for each of the following multigraphs: 

Exercise 18.3 Let G be an (n, n)-multigraph, where n 2:: 3. Which G has the largest 

T(G)? 

Exercise 18.4 Consider the following graph H obtained from two cycles Cp and Cq by 

identifying an edge in Cp with an edge in Cq, where p, q 2:: 3. Evaluate T(H) in terms of 

p and q. 
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H: 

Exercise 18.5 Let G be an (n, n + 1)-multigraph, where n > 3. Which G has the 

largest r( G) ? 

Exercise 18.6 Let G be a multigraph andean edge in G. Denote by G(e) the multi­

graph obtained from G by inserting a new vertex of degree 2 into e as shown below: 

G: G(e): 

Study the relation between r(G(e)) and r(G). 

19 Kirchhoff's Matrix-Tree Theorem 

In this section, we shall introduce another way for the enumeration of r(G), which makes 

use of the notion 'matrix'. In what follows, we assume that the readers are familiar with 

some basic concepts pertaining to it. 

Every multigraph can be represented uniquely by a matrix, called its adjacency matrix. 

In general, let G be a multigraph with vertex set V(G) = { v1 , v2 , · · ·, vn}· The adjacency 

matrix of G is then x n matrix A( G) = (ai,J) in which 'ai,/ is the number of edges joining 

the vertices vi and Vj, where i,j = 1, 2, · · · , n. For instance, if G is the multigraph of 

Figure 19.1, 

Figure 19.1 
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then we have a11 = a2 2 = a3 3 = a4 4 = 0, a1 2 = a2 1 = 1, a13 = a3 1 = 0, a14 = a4 1 = 2, ' ' ' ' ' ' ) ' , ' 

etc and so 

A(G) ~ u ~ ~ D 
Notice that the matrix A( G) is symmetric and all the diagonal entries in A( G) are zero. 

Let us define another matrix associated with G, called its degree matrix. In general , 

the degree matrix of G is the matrix D(G) = (di,J)nxn, where 

d . _ { the degree of vi, 
~ .J - 0 

' 

if j = i, 
otherwise. 

Thus, D( G) is a diagonal matrix in which the diagonal entries are the degrees of the 

corresponding vertices in G. For instance, for the multigraph G of Figure 19.1 , 

u 
0 0 

D D(G) = 
5 0 
0 4 
0 0 

Observe that 

(~I 
-1 0 -2) 

D(G)- A( G) = 
5 -3 -1 

-3 4 -1 . 

-2 -1 -1 4 

We shall see that this resulting matrix D( G) - A( G) plays a prominent role in evalu­

ating 1(G). 

Let M be an n x n matrix. For i , j = 1, 2, · · · , n , the cofactor of the ( i , j)-entry in M 

is defined as ( -l)i+J times the determinant of the (n- 1) x (n -1) matrix obtained from 

M by deleting the i-th row and j-th column in M. 

For instance, if M is the 4 x 4 matrix D(G)- A(G) shown above, then 

5 -3 -1 
the cofactor of the (1, I)-entry in Misgiven by (-1)1+1 -3 4 -1 = 29 

-1 -1 4 

and 

3 0 -2 
the cofactor of the (3, 2)-entry in M is given by (-1)3+2 -1 -3 -1 = 29. 

-2 -1 4 

We are now ready to state without proof the following beautiful and surprising result , 

known as the Matrix-Tree theorem, which is implicit in the work of Gustav Kirchhoff 

( 1824 - 1887). 
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Theorem 19.1 For any multigraph G1 1(G) is equal to the cofactor of any entry in 

D(G)- A(G). 

Remarks. 

(1) In general, given a square matrix M, the cofactors of different entries in M need not 

be the same. However, due to the special feature of D(G)- A(G) (note that the 

sum of the entries in each row or column is zero), the cofactors of any two different 

entries in D(G)- A(G) are the same. Thus, as highlighted in Theorem 19.1, the 

value of 1(G) is independent of the choice of the entry in D(G)- A(G). (See the 

example preceding Theorem 19.1. Note that 1(G) = 29 in this case.) 

(2) As far as computing 1(G) is concerned, it seems that Theorem 18.1 is more user 

friendly than Theorem 19.1. In fact, if the order and size of G are large, The­

orem 18.1 is impractical. On the other hand, there are efficient ways available to 

compute the determinant of a square matrix. Thus, one can compute 1( G) efficiently 

by Theorem 19 .1. 

(3) The reader may refer to [2] for the proof of Theorem 19.1 and its generalizations. 

Exercise 19.1 For each of the following multigraphs G, compute 1(G) by Theorem 19.1. 
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