


1. (Albanian Mathematical Olympiad, 2000) Prove the inequality 

(1 + X1)(1 + X2) · · · (1 + Xn) < 
2
n-l 

- ) 
where Xi E [1, oo), i = 1, ... , n 

When does equality hold? 

2. (Ukrainian Mathematical Olympiad, 2003) Let n be a positive integer. Some 
2n2 + 3n + 2 cells of a (2n + 1) x (2n + 1) square table are marked. Does there always 
exist one three-cell figure shown below (such figures can be oriented arbitrarily) such 
that all three cells are marked? 

Eb 
3. (Bulgarian Mathematical Olympiad, 2004) Let I be the incentre of 6ABC and 
let A1, B1, C1 be arbitrary points on the segments AI, BI, CI, respectively. The per­
pendicular bisectors of AA1 , BB1 , CC1 intersect at A2 , B 2 , C2 . Prove that the cir­
cumcentre of A2B2C2 coincides with the circumcentre of ABC if and only if I is the 
orthocentre of A1B1C1. 

4. (Russian Mathematical Olympiad, 2004) The distance between two 5-digit num­
bers a1a2a3a4a5 and b1b2b3b4b5 is the maximal integer i for which ai # bi. All the 
5-digit numbers are written down one by one in some order. What is the minimal 
possible sum of distances between adjacent numbers? 

5. (Hungarian Mathematical Olympiad, 2002/3) Let n be an integer, n ;::: 2. We 
denote by an the greatest number with n digits which is neither the sum nor the 
difference of two perfect squares. (a) Determine an as a function of n. (b) Find the 
smallest value of n for which the sum of squares of the digits of an is a perfect square. 

6. (Thai Mathematical Olympiad, 2003) Find all primes p such that p2 + 2543 has 
less than 16 distinct positive divisors. 

7. (Italian Mathematical Olympiad, 2003/4) Let r and s be two parallel lines and 
P, Q be points on r and s, respectively. Consider the pair (Cp, CQ) where Cp is a 
circle tangent to r at P, CQ is a circle tangent to s at Q and Cp, CQ are tangent 
externally to each other at some point, sat T. Find the locus ofT when (Cp, CQ) 
varies over all pairs of circles with the given properties. 

8. (Estonian Mathematical Olympiad, 2003/4) (a) Does there exist a convex quadri­
lateral ABC D satisfying the following conditions: 

(1) ABCD is not cyclic; 

(2) the sides AB, BC, CD and DA have pairwise different lengths; 

(3) the circumradii of the triangles ABC, BAD and BCD are equal? 

(b) Does there exist such a non-convex quadrilateral? 
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9. (Indian Mathematical Olympiad, 2004) Let S denote the set of all 6-tuples 
(a, b, c, d, e, f) of positive integers such that a2 + b2 + c2 + d2 + e2 = P. Consider the 
set 

T = {abcdef: (a, b, c, d, e, f) E S}. 

Find the greatest common divisor of all the members ofT. 

10. (Ukrainian Mathematical Olympiad, 2004) Let A1 , A2, ... , A2oo4 be the vertices 
of a convex 2004-gon(i.e., a polygon with 2004 sides). Is it possible to mark each side 
and each diagonal of the polygon with one of 2003 colours in such a way that the 
following two conditions hold: 

(1) there are 1002 segments of each colour; 

(2) if an arbitrary vertex and two arbitrary colours are given, one can start from 
this vertex and, using segments of these two colours exclusively, visit every other 
vertex only once? 

Solutions to the problems of Volume 31 No.2 2004 

1. (Russian Mathematical Olympiad, 2003) Point K is chosen on the diagonal AC 
of the convex quadrilateral ABC D so that K D = DC, LBAC = ~ LK DC, LD AC = 
~LKBC. Prove that either LKDA = LBCA or LKDA = LKBA. 

Solution by Daniel Chen Chongli. 

A 

Let the internal angle bisector of LCDK meet the line AB at X. Then DX also bisects 
LKXC. Also LXAC = ~LKDC = LXDC and hence XCDA is cyclic. Therefore 
LDXC = LDAC. Thus LKXC = 2LDAC = LKBC. Let the circumcircle of 
6.XCK meet AB at Y. Then LKYC = LKXC = LKBC. So X andY are the only 
two points on AB that satisfy the property that LKXC = LKYC = 2LDAC. Thus 
B is either X or Y. Since 

LKDA =goo- ~LKDC- LKAD 

LKXA =goo- LXAC- ~LKXC 
LKXA=LYCA 



we have L.KDA = L.KXA = L.YCA. We see that results holds whether B =X or 
B=Y. 

2. (Czech and Slovak Mathematical Olympiad, 2003) A sequence (xn)~=l of integers 
whose first member x1 = 1 satisfies the condition 

Xn = ±Xn-1 ± Xn-2 · · · ± X1 

for a suitable choice of the signs "+" and "-", for any n > 1; for instance, x2 = -x1 , 

X3 = -x2 + x1, X4 = X3 - X2 - X1, .... For a given n, find all possible values of Xn· 

Solution by Charmaine Sia Jia Min. Also solved by Daniel Chen Chongli, Joel Tay 
Wei En, Anand B. Rajagopalan, Kenneth Tay Jingyi, Andre Kueh Ju Lui and Zhao 
Yan. 

It's clear that the set of values for x 1 , x2 and X3 are, respectively, 

{1}, { -1, 0, 1}, { -2, 0, 2}. 

Claim: For n ~ 3, the maximum and minimum values of Xn are 2n-2 and - 2n-2, 
respectively. 

Proof. This is clearly true for n = 3. Now we assume that it's true for some n ~ 3. 
Then max(xnn) = max(x1)+max(x2)+· · ·+max(xn) = 1+2+· · ·+2n-2 = 2n+l-3 . 

The same goes for min(xn+l· 

Claim: For n ~ 3, by taking Xi = 2i-2 for 2:::; i :::; n- 1, there exists a choice of 
signs such that :X:n can assume any even value in [-2n-2, 2n-2]. 

Proof. This is clearly true for n = :3. We now assume that it's true for some 
n = k- 1, n ~ :3. Let m be an even integer in [0, 2k-2]. Take Xk-l = 2k-3 which 
is possible by the induction hypothesis. Note that m- Xk-t is an even integer in 
[-2k-3 , 2k-3]. By the induction hypothesis again, we can choose Xt, ... ,Xk-2 so that 
±x1 ± · · · ± Xk-2 = m- Xk-l· Thus Xk-1 ± Xk-2 ± · · · ± x1 = m. Thus the value m 
can be attained. By reversing the signs in the above expression, we can also obtained 
-m. Thus the claim is complete. 

3. (Hong Kong Mathematical Olympiad, 2003) Let n ~ 3 be an integer. In a 
conference there are n mathematicians. Every pair of mathematicians communicate in 
one of n official languages of the conference. For any three different official languages, 
there exist three mathematicians who communicate with each other in these three 
languages. Determine all n for which this is possible. Justify your claim. 

Solution by Charmaine Sia Jia Min. Also solved by Daniel Chen Chongli. 

Since there (~) triples of languages and the same number of triples of mathe­
maticians, there is a bijection between these two types of triples. It's clear that the 
number of mathematicians speaking each language must be the same. Hence n I (;), 
i.e., 2 I n- 1 and n is odd. 

Now we consider the following construction: colour each of the edges of a regular 
polygon with n sides, n odd, is a different colour. Now colour all the diagonals of the 
polygon which are parallel to a particular edge in the same colour as that edge. Since 



the triple of gradients (a, b, c) of the sides of any triangle in the polygon is unique and 
there are (;) ways of choosing the gradients for a triangle and (;) ways of choosing a 
triangle, there is a bijection between every combination of 3 colours and every triangle. 

4. (Romanian Mathematical Olympiad, 2003) An integer n, n 2: 2 is called friendly 
if there exists a family All A 2, ... , An of subsets of the set {1, 2, ... , n} such that: 

(1) i ¢. Ai for every i E {1, 2, ... , n}; 

(2) i E Aj if and only if j ¢. Ai, for every distinct i,j E {1, 2, ... , n}; 

(3) Ai n Aj is nonempty, for every i,j E {1, 2, ... , n}. 

Prove that n is friendly if and only if n 2: 7. 

Solution by Soh Yong Sheng. We consider the n x n incidence matrix of the sets. 
This is the matrix where the rows are indexed by the sets A1, A2, ... , An and the 
columns are indexed by 1, 2, ... , n. The (Ai,j) entry of the matrix is 1 if j E Ai and 
is 0 otherwise. Conditions 1 and imply that the matrix is "anti-symmetric" in the 
sense that the main diagonal consists of O's and the for all i =I= j, the ( i, j) and (j, i) 
entries are different. Condition 3 implies that every pair of rows must have a 1 in the 
corresponding position. The following incidence matrix shows that n = 7 is friendly: 

1 2 3 4 5 6 7 
A1 0 1 1 1 0 0 0 
A2 0 0 1 0 1 1 0 
A3 0 0 0 1 1 0 1 
A4 0 1 0 0 0 1 1 
A5 1 0 0 1 0 1 0 
A6 1 0 1 0 0 0 1 
A1 1 1 0 0 1 0 0 

For n > 7 the following n x n matrix is friendly: 

where X is the above 7 x 7 friendly matrix, Y is the matrix with the second row 
consisting of 1 's while all the other entries are O's, Z is the matrix with the second 
column consisting of O's while all the other entries are 1 's and Z is an arbitrary 
antisymmetric matrix. 

Finally we show that n is not friendly for n:::; 6. Since the total number of 1 'sin 
the matrix is (~), and that 3n > (;) for n :::; 6, there is a row with at most two 1 's. 
Without loss of generality, let A1 = {2, 3}. Then we see that 3 E A2 and 2 E A3 by 
condition 3. But this violates condition 2. Thus n is not friendly. 

5. (Russian Mathematical Olympiad, 2003) Let f(x) and g(x) be polynomials with 
nonnegative integer coefficients and that m is the largest coefficient of f. It is known 
that for some natural numbers a < b, the equalities f(a) = g(a) and f(b) = g(b) are 
true. Prove that if b > m, then f and g are identical. 



Solution by Wu Jiawei. Suppose f(x) =/= 9(x). Let 

f(x) = apxP + · · · + a1x + ao 

9(x) = /3qxq + · · · + fJ1x + f3o 

Since m < b, when written in base b, we have f(b) = (ap ... a 1ao)b· There exists 
j such that /3i 2: b, for if not, then by the uniqueness of base b representation, we 
have p = q and ai = /3i for all j, i.e. f(x) = 9(x). Let i be the smallest index 
such that f3i 2: b. Let /3i = kb + r, k, r are integers with 0 ::::; r < b and k 2: 1. Let 
91 (x) = f]~xq + · · · + f]~x + /3b, where /3f = r, /3f+1 = /3i+1 + k and /3j = /3i for all other 
j's. Then 9(b) = 91 (b) and 91 (a) - 9(a) = kai(b- a) > 0. Repeat this process say 
k times, we obtain a sequence of polynomials 91 (x), ... , 9k(x), where the coefficients 
of 9k are all nonnegative and less than b, 9(b) = 91(b) = · · · = 9k(b) = f(b) and 
f(a) = 9(a) > 91(a) > · · · > 9k(a). But from 9k(b) = f(b), we get 9k(x) = f(x). Thus 
we get a contradiction and so f(x) = 9(x). 

6. (Austrian Mathematical Olympiad, 2002) Let ABCD and AEFG be similar 
cyclic quadrilaterals, whose vertices are labeled counterclockwise. Let P be the second 
common point of the circumcircles of the quadrilaterals beside A, show that P must 
lie on the line connecting Band E. 

Similar solutions by Joel Tay Wei En, Kenneth Tay Jingyi, Anand B. Rajagopalan, 
Andre Kueh Ju Lui, Daniel Chen Chongli, Zhao Yan, Soh Yong Sheng and A. Robert 
Pargeter who also points out the result holds tr-ue for any pair of similar cyclic polygon. 

Q 

There are two cases. The first being that E is outside the circumcircle of ABCD. 
The similarity of the polygons implies that LABQ = LAER. The alternate segment 
theorem then implies that LAP B + LAP E = 180°. So B, E, P are collinear. The 
second is that E is inside the circumcircle of ABC D. In this case we have LAP B = 
LAPE, whence B, E, Pare collinear. 

7. (Belarusian Mathematical Olympiad, 2003) Given a convex pentagon ABCDE 
with AB = BC, CD= DE, LABC = 150°, LCDE = 30°, BD = 2, find the area of 
ABC DE. 

Similar solution by Anand B. Rajagopalan and Zhao Yan. Also solved by Daniel Chen 
Chongliand Charmaine Sia Jia Min. 

Let AB = BC =a, CD= DE= band LACE= x. By the cosine rule on BCD, 
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a2 + b2 - 2abcos(90 + x) = a2 + b2 + absinx = 4. Thus 

[ABCDE] = [ABC]+ [ACE]+ [ECD] 

= (a2 sin 15 + b2 sin30 + (2acos 75)(2bcos 15) sinx)/2 
1 

= 2 sin30(a2 + b2 + 2absinx) = 1. 

8. (Korean Mathematical Olympiad, 2003) Show that there exist no integers x, y, z 
satisfying 

x=rfO. (1) 

Solutions by Wu Jiawei. Suppose the equation has a solution. Rewrite it as 

Let x be the least positive integer that satisfies the equation. Suppose gcd(x, y) =a. 
Then by dividing both sides by a4 we see that x /a also satisfies the equation. Thus 
a= 1. By Pythagorean triples, we get two cases: Case 1: 

or case 2: 

x2 = 2ab 
x2 + y2 = a2 _ b2 

z2 = a2 + b2 

x2 = a2- b2 

x 2 + y2 = 2ab 
z2 = a2 + b2 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 

In case 2, we have from (6), that x andy are of the same parity. Thus they must be 
odd. From (5), a and bare of opposite parity. Thus taking mod 4 in (6) we get 2 _ 0, 
a contradiction. Thus case 2 is impossible. 

In case 1, suppose gcd(a, b) = k. Then k I x from (2) and k I y from (3). Thus 
k = 1. Since gcd(y, a) I x and gcd(y, b) I x, we see that gcd(y, a) = gcd(y, b) = 1. 
From (2), x is even. Since gcd(x, y) = 1, y is odd. From (3), we have a2 - b2 _ 1 
(mod 4). Hence b is even and a is odd. Since gcd(a, b) = 1, we have, from (2), a= c2 , 

b = 2J2 for some positive integers c, d with gcd(c, d) = 1, and c odd. Then 

x2 = 4c2d2 

y2 = c4- 4c2d2- 4d4 

Let k = c2 - 2J2. Then k is odd. We have 

(8) 

(9) 



Let A = ~ + ! and B = ~ - ! . Then A and B are both integers as k and y are both 
odd. Then A- B = y and AB = 2d4. Since gcd(y, 2d4) = 1 (from (9)), if pis a prime 
that divides two of d, A and B, then it can't divide the third. Thus if A is even, then 
there exist and coprime positive integers p, q such that A = 2p4 and B = q4. Then 

2p4 + 2p2q2 + q4 = k + 2d2 = c2. 

Since p::; d < x, it contradicts the minimality of x. So case 1 is also impossible. Thus 
the equation has no solution. 

9. (Iranian Mathematical Olympiad, 2003) Find the smallest positive integer n such 
that: 

"For any finite set of points in the plane, if for every n points of this set, there 
exist two lines covering all n points, then there exist two lines covering all the set." 

Similar solutions by Anand B. Rajagopalan and Andre Kueh Ju Lui. Also solved by 
Daniel Chen Chongli, Joel Tay Wei En and Zhao Yan. 

The following configuration shows that n ;:::: 6 since every set of five points can be 
covered by 2 lines but the entire set cannot be covered by two lines .. 

• 
• • 
• • • 

We shall now show that n = 6. Take any set of 6 points. Since they are covered by 2 
lines, one of the lines , say £, must contain 3 points, say A, B, C. If there are at most 2 
points not covered by £, then two lines can cover all the points. So suppose there are 
three points X, Y, Z not on£. Since {A, B, C, X, Y, Z} can be covered by two lines, 
one of the lines must be £ for otherwise we would need three lines to cover A, B, C. So 
X, Y, Z must be covered by a single line m. This argument can be repeated to show 
that all the points not covered by£ are covered by m and so the proof is complete. 

10. (Finland Mathematical Olympiad, 2003) 

Players Aino and Eino take turns in choosing numbers from the set {0, 1, ... , n}, 
where n E N is a predetermined number. The game ends when the numbers chosen 
by either player contain a set of four numbers that can be arranged to an arithmetic 
progression. The player whose numbers contain such progression wins the game. Show 
that there exists an n for which the first player has a winning strategy. Find the least 
possible n for which this is possible. 

Solution by Daniel Chen Chongli. Also solved by Andre K ueh Ju Lui. 

For n = 14, there is a winning strategy for the first player, say Aino. Aino takes 
7. By symmetry, we need only consider what happens if Eino takes 0, 1, ... , 6. If Eino 
takes 0, 1, 2, 3, or 4, Aino takes 9, threatening to take 8 and win at either 6 or 10. 
This Eino must take 6, 8 or 10. Now Aino takes 11 and will win at 5 or 13. 

If Eino takes 5, Aino takes 10, threatening to take 4 and win at 1 or 13. If Eino 
takes 1 or 13, Aino takes 8, Eino must take 9 and Aino takes 12 and wins with either 
6 or 14. If Eino tales 4, Aino takes 8, Eino must take 9, Aino takes 12 and wins with 
either 6 or 14. 

The case Eino takes 6 is similar and is omitted. 

) 
_/ 
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