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ABSTRACT. The probability that a number in many naturally occurring tables 

of numerical data has first significant digit (i.e., first non-zero digit) d is pre-

dicted by Benford's Law Prob (d) = log10 (1 + ~) , d = 1, 2 ... , 9. Illustrations 

of Benford's Law from both theoretical and real-life sources on both science and 

social science areas are shown in detail with some novel ideas and generalizations 

developed solely by the authors of this paper. Three tests, Chi-Square test, total 

variation distance, and maximum deviations are adopted to examine the fitness 

of the datasets to Benford's distribution. Finally, applications of Benford's Law 

are summarized and explored to reveal the power of this mathematical principle. 

1. Introduction 
The significant-digit law of statistical folklore is the empirical observation that in 

many naturally occurring tables of numerical data, the leading significant digits 

are not uniformly distributed as might be expected, but instead follow a particular 

logarithmic distribution. Back to 1881, the astronomer and mathematician Simon 

Newcomb published a 2-page article in the American Journal of Mathematics de­

scribing his observation that books of logarithms in the library were dirtier in the 

beginning and progressively cleaner throughout [1]. He inferred that researchers, 

be them mathematicians, biologists, sociologists as well as physicists, were looking 

up numbers starting with 1 much more often than numbers beginning with 2, and 

numbers with first digit 2 more often than 3, and so on. This ingenious discovery led 

him to conclude that the probability that a number has first significant digit (i.e., 

first non-zero digit) d is Prob (d) = log10 ( 1 + ~) , d = 1, 2 ... 9. In particular, 

his conjecture stated that the first digit is 1 about 30.1% of the time, and is 9 only 

about 4.6% of the time. That digits are not equally likely comes as somewhat of a 

surprise, but to claim an exact law describing their distribution is indeed striking. 

Passed unnoticed, the proposed law was discovered again and supported by empir­

ical evidence by the physicist Benford who analyzed the frequencies of significant 

digits from twenty different tabled including such diverse data as surface areas of 

335 rivers, specific heat of thousands of chemical compounds, and square-root tables 

[2]. And this First Digit Law is known as Benford's Law today. But in recognition 



of Newcomb's discovery, we can call it Newcomb-Benford's Law. This law applies 

to stock prices [3], number of hours billed to clients [4] or income tax [5] as well as 

mathematical series [6]. And the tremendous practical values of Benford's Law were 

neglected until recently many mathematicians began to focus on the applications of 

this amazing phenomenon such as the design of computers and analysis of roundoff 

errors [7, 14, 15], as well as a goodness-of-fit against Benford to detect fraud [8]. 

In this paper, we will be dealing with heuristic argument and distributional property 

of the Significant-digit law in section 2; checking how data from various sources fit 

Benford's Law in section 3; discussing the application of Benford's law in section 4. 

2. Mathematical Formulation 
2.1 Heuristic Argument 
Pietronero and his colleagues gave a general explanation for the origin of the Ben­

ford's law in terms of multiplicative processes in 2001 [3]. The explanation was 

amended slightly in such a way that it can be used to explain the Benford's distri­

bution not specifically to base 10. It stated that many systems such as the stock 

market prices which is discussed later do not follow the dynamical description by a 

Brownian process: 

N(t + 1) = ~ + N(t), 

but rather a multiplicative process: 

N(t + 1) = ~N(t) 

where ~ is a stochastic variable. By a simple transformation, we get 

ln N ( t + 1) = ln ~ + ln N ( t). 

If you consider ln ~ as the new stochastic variable, you recover a Brownian dynamics 

in a logarithmic space; here we mean that a random multiplicative process corre­

sponds to a random additive process in logarithmic space. This implies that as 

t -+ oo, the distribution Prob (ln N) approaches a uniform distribution. By trans­

forming back to the linear space we have 

I Prob (lnN)d(lnN) =I Cd(lnN) = C I ~dN, 
where C is a constant. 

1 
It should be noted that Prob (N) = N is not a proper probability distribution, as it 

1 
diverges or put in another way J0

00 N dN is undefined. However the physical laws 
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and human conventions usually impose maximums and minimums. The probability 

that the first significant digit of N is n in base b is given by the following expression: 

J,n+l .l.. dN ln n+l ( 1 ) 
Prob (n) = n N = __ n_ =log 1 +- , 

f b.l..dN lnb b n 
1 N 

for any n which is less than b. We can review Prob ( n) = 1ogb ( 1 + ~) as a gener­

alized expression of Benford's law to arbitrary base b. 

2.2 The Significant-Digit Law and Some Consequences 
2.2.1 Significant-Digit Law 

The Significant-Digit Law is 

where D1, D2, ... Dk are the first, second ... k'th digits respectively. 

For example, Prob (D1 = 1, D2 = 2, D3 = 9) = log10 (1 + (129)-1) ~ 0.00335, which 

means there is a probability of 0.00335 that the first three significant digits are 129 

in a sample of Benford's distribution [11]. 

Hill has proved in his papers: "Scale-Invariance implies Base-Invariance", not vice 

versa [9]; "Base-Invariance implies Benford's Law [10]"; "The logarithmic distribu­

tion is the unique continuous base-invariant distribution [9]". He has explained the 

Central-limit-like Theorem for Significant Digit by saying: "Roughly speaking, this 

law says that if probability distributions are selected at random and random samples 

are then taken from each of these distributions in any way so that the overall pro­

cess is scale (or base) neutral, then the significant-digit frequencies of the combined 

sample will converge to the logarithmic distribution [11]". 

2.2.2 Distributional Properties of Dk's 

Based on the Significant-Digit Law, we analyze the statistics and distributional 

properties of a Benford's Distribution. 

2.2.2.1 Mean and Variance for Dk 
In this subsection, we compute the numerical values of the means and variances of 

Dk 's using these expressions: 

9 

E(Dk) = L nProb (Dk = n) 
1 



9 

Var (Dk) = L n2 Prob (Dk = n)- E(Dk) 2
, 

n=l 

and tabulate them below. 

Table 1 Mean and variance of Dk for k = 1 to 7 
k E(Dk) Var (Dk) 

1 3.44023696712 (5) 6.0565126313757 (6.67) 

2 4.18738970693 (4.5) 8.2537786232732 (8.25) 

3 4.46776565097 (4.5) 8.250094364 7286 (8.25) 

4 4.49677537552 (4.5) 8.2500009523513 (8.25) 

5 4.49967753636 (4.5) 8.2500000095245 (8.25) 

6 4.49996775363 (4.5) 8.2500000000953 (8.25) 

7 4.49999677536 (4.5) 8.2500000000016 (8.25) 

This shows that by the Significant-digit law the mean of Dk is approaching 4.5 which 

is the mean if the distribution were uniform and the variance of Dk is approaching 

8.25 which is the variance if the distribution were uniform. 

2.2.2.2 Histogram of Dk fork 
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Fig 1. Histograms of Dk fork= 1 
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Fig 2. Histograms of Dk fork= 2, 3, 4, 5 

With the histogram, we illustrate that the distribution of the nth significant digit 

approaches the uniform distribution rapidly as n ----> oo. 
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2.2.2.3 Total variation distance of Dk with respect to a uniform distribution 
Table 2. Total Varia-

By calculating the total variation distance d(D1, U) of 

Dk from a uniform distribution on {0, 1, 2 ... 9} using 

these expressions: 

tion Distance of Dk from 

a uniform distribution on 

{0,1,2, ... ,9}. 

d(D,, U) = ~ t, IProb (D, = n)- ~~ fork= I 

d(D., U) = ~ t, IProb (Dk = n)- 1~ I fork#!. 

As shown in the table, we observe that the Dk is 

converging to the uniform distribution geometrically. 

2.2.2.4 Correlation coefficient of D; and Dj 
Here, by calculating the correlation coefficient of Di and Dj, 

k d(Dk, U) 

1 0.26872666 

2 0.04702863 

3 0.00488356 

4 0.00048858 

5 0.00004886 

6 0.00000489 

7 0.00000049 

k ---+ 00 d(Dk, U) ---+ 0 

for 0 < i < j. we intend to investigate the dependence of one digit on another digit. 

We conclude that the dependence among significant digits decreases as the distance 

(j - i) increases. 

Table 3.Correlation coefficient of Di and Dj 

~ 2 3 4 5 

1 0.0560563 0.0059126 0.0005916 0.0000591 

2 0.0020566 0.0002059 0.0000205 

3 0.0000228 0.0000022 

4 0.0000002 

3. Illustrations 
The Chi-Square test formula to check the sample's goodness of fit to Benford's 

distribution is given as below, 

2( 0 ) ~ (log (1 + l.) - Prob (D1 = n))2 
X 8 = L...t n X 8, 

n=l log (1 + ~) 

where S denotes the sample size. The critical values for 8 degree of freedom at 0.05 

and 0.10 level of significance are respectively 15.51 and 20.09. 

Another test, which we have used to analyze the sample, is the total variation 

distance (denoted as d1 here) of the sample from the Benford's distribution on 



{1, 2, ... '9}: 

1 o I 1 I d1 = 2 ~ Prob (D1 = n) -log(1 + ;;:) . 

The maximum of deviations from a uniform distribution for each digit could also be 

considered as a test to check the goodness of fit: 

3.1 Physical Constants 
Many literatures on Benford's law cite the table of physical constants as an example 

to illustrate Benford's law [9, 10, 11]. It was only Burke and his colleagues who 

actually attempted to check whether the physical constants would match Benford's 

law [12]. 
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However they only chose the con­

stants from an introductory physics 

text. The sample size is too small 

to be significant. Here the 183 

constants from the 1998 Committee 

On Data for Science and Technology 

recommended complete listing of 

the fundamental physical constants 

(http: I lphysics.nist.gov I constants) 

were analyzed for the first time. Fig 3. Histogram on fitness of physical constant 

Table 4. First Significant Digit Test for the physical constants. 
Digits Counts in Predicted by Frequency Observed The Difference 

Sample Frequency Benford's Law in Sample 

1 63 0.3010 0.3443 0.0432 

2 37 0.1761 0.2022 0.0261 

3 18 0.1249 0.0984 -0.0266 

4 15 0.0969 0.0820 -0.0149 

5 15 0.0792 0.0820 0.0028 

6 13 0.0669 0.0710 0.0041 

7 7 0.0580 0.0383 -0.0197 

8 7 0.0512 0.0383 -0.0129 

9 8 0.0458 0.0437 -0.0020 

Sample Size: 183 Chi-Square Test: 5.206 

Total variation distance: 0.0762 Maximum of deviations: 0.0432 

M:Jthematical Medley 63 



3.2 Stock Prices & One-day Returns on Stock Index 
Interesting results on the frequency of first significant digit of one-day returns on 

stock index were found by Ley [13]. However, investigations on stock prices were not 

done. According to Pietronero, due to the multiplicative process, a stock's prices 

over a long period of time should conform to Benford's Law. Here, we look at all 

stock's prices on certain days rather than a single stock's prices on a series of days. 

We collected data on local stock market SGX main board from http:/ /www.sgx.com. 

Table 5. Analysis of Stock Prices 
Sample Source Sample Size x2 dl dmax 

A One-trading-day 548 2.23 0.0277 0.01734 

(13/10/2003) 

B 20-trading-Day 11,015 45.5 0.0255 0.01501 

(10/10/2003- 7 /11/2003) 

c 32-trading-Day 17,214 79.3 0.0284 0.01834 

(10/10/2003- 26/11/2003) 

The observed frequencies roughly agree with the theoretical frequency predicted by 

Benford's law, indicted by the relatively small values of the total variation distance 

(0.0277, 0.0255 and 0.0284) of the sample and the Benford's distribution. However, 

if we performed the usual chi-square test of goodness of fit, we would reject the null 

hypothesis for datasets B and C, as the chi-square values are much greater than 

15.51 for the critical chi-square test value of 8 degrees of freedom at 5% significant 

level or 20.09 at 1% significant level. It is because of the large number of observa­

tions - that is, the classical acceptance region shrinks with the sample size, given a 

significant level. On the contrary, the Benford's hypothesis would not be rejected 

for dataset A. 

One interesting thing, which in 

three sets of data dmax always oc­

curs at n = 2, attracts our atten­

tion. By plotting the histograms 

of three datasets against a Ben­

ford's distribution, it is found 

that the distributions of stock 

price data are in quite agree­

ment among themselves but a lit­

tle different from Benford's distri­

bution. 
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Fig 4. Histogram on fitness of stock prices 



We attribute this to the fact that a simple multiplicative process cannot precisely 

reproduce the complicated stock process thus the distribution of stock prices data 

may follow a curve that is steeper than the log curve of Benford's Law. 

3.3 Some Mathematical Series 
3.3.1 Fibonacci Series 
Here we provide a simple explanation for the conformance of Fibonacci series to 

Benford's law. Fibonacci series is characterized by the recursion relation: an+2 = 

an+l + an. This formula does not provide the explicit information of a general 

term from the series that may suggest the origin of Fibonacci series' conformance to 

Benford's law. However, it could be easily derived that say for a series with a1 = 1, 

a2 = 2: 

Moreover, the magnitude of the second term is I ( 1-2V5) n-
1 

( 5- 1
3
0v'5) I which is al­

ways less than 1 and approaches zero when n gets larger and larger. Thus to analyze 

the first significant digit of an, we only need to analyze: 

1 = (1+J5)n-1 (5+3J5) 
an 2 10 

instead. Now we have lna~ = (n- 1) ln ( 1+2v'5) + ln ( 5+lov'5). When the sample 

size is large, distribution on n could be considered as uniform, with ln ( 1+2v'5) and 

ln ( 5+1
3
0V5) being constants, {ln a~} will be uniform. It is then followed that the 

{a~} and therefore {an} will be uniformly distributed in logarithmic space and will 

conform to Benford's law. 

3.3.2 The Prime-number Series 
The prime number series is rather uniform below 100000, with the probability of 

each possible first significant digit being between 12.5% and 10.4%. Moreover, using 

the upper and lower bounds of function pi from the prime number theorem, it can 

be shown that the prime number sequence approximates a uniform distribution. 

3.3.3 Sequence an in base b, where a E R, n E N 
The origin of Benford's distribution in o:n is often attributed to its scale invariance 

which means that any power law relation is scale invariant: 

Prob (>..N) = j(>..) Prob (N). 
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An even simpler argument can be done. For an in base b, where a is a constant, the 

sufficient condition for which the first significant digit of an is d is d x bk :::; an < 
( d + 1) x bk (that is 1ogb d + k :::; n 1ogb a < log b( d + 1 + k) for an integer k. Thus 

for each k, the probability for the first significant digit of an being d is 

(1ogb(d+1)+k)-(logbd+k) =l (d+1) 
( k + 1) - k ogn d · 

3.3.4 Factorial 
For the first 160 factorial numerical values, the chi-square test does not reject the 

Benford's distribution; however the total variation distance is too big for it to be 

considered as fit. 

3.3.5 Sequence of Power, i.e. n2, n3, n4, n5, ... 

For nk series, as the constant k increases, the distribution becomes closer to the 

Benford's law. All values of the three tests get smaller as k increases, as shown in 

the analysis of n 2 , n5 , n20 and n 50 for n = 1 to 30,000. 

3.3.6 Numbers in Pascal Triangle 
We suspect that the numbers in Pascal Triangle obeys Benford's law, because it 

relates to Fibonacci Series closely while in another perspective it could be considered 

as a mixture of sequences of power. However in this paper, no data on Pascal triangle 

were analyzed. 

Table 6. Analysis of some mathematical series 
Sample Sample Size x2 dl dmax 

Fibonacci Series (7 series) 10, 317 0.0125 3.8 x w-4 1.1 x w-4 

Prime-number below 1,000 168 45.0 0.2271 0.1522 

Prime-number below 100,000 9761 3247 0.4905 0.1761 

1.007n, Specifically for n = 1 to 30,000 30,000 0.410 ,1.2 x 10-3 5.9 x 10-4 

1.007n, Specifically for n = 1 to 65,028 65,028 0.0329 2.5 x 10-4 1, 2 x 10-4 

Factorial of 1 to 100 100 6.95 0.0651 0.04885 

Factorial of 1 to 130 130 8.97 0.0871 0.03492 

Factorial of 1 to 160 160 10.10 0.0834 0.03635 

n2 , Specifically for n = 1 to 30,000 30,000 3.16 X 103 0.1409 0.09900 

n5 , Specifically for n = 1 to 30,000 30,000 2.76 X 102 0.0394 0.03640 

n20 , Specifically for n = 1 to 30,000 30,000 20.8 0.0112 0.00681 

n50 , Specifically for n = 1 to 30,000 30,000 3.7 0.0048 0.00256 



3.4 Demographic Statistics and other social science data 
The demographic data that the author used in this section are obtained from Energy 

Information Administration United States Department of Energy. 

Table 7. Analysis of demographic data 
Sample Size x2 dt dmax 

G D P total for each 1606 33.0 0.1009 0.03352 
country in 1992-2001 

World Consumption of 480 40.5 0.1113 0.05936 
Primary Energy by Selected 

Country Groups, 1992-2001 

Population for each 212 6.59 0.0792 0.04160 
country in year 2001 

Crude Oil Production, 4196 32.2 0.0383 0.02166 
Import and Export, 
Stock Build Statistics for 
Each Country in 1990-2001 

The chi-square test rejects the null hypothesis (the data's obeys the Benford's dis­

tribution) for all except the population statistics; while the total variation distance 

says that the oil statistics fit the Benford's distribution better than the other three. 

Other two sets of statistics in social science obtained from The World Affair Com­

panion by Gerald Segal (1996) are also analyzed. The null hypothesis is accepted 

in both cases in the chi-square test. 

Table 8. Analysis of social science data 
Sample Size x2 dt dmax 

Annual average number of 333 11.05 0.0715 0.03222 
people reported killed or 
affected by disasters per 
region and country in 1968-1992 

Weapon imports of 50 291 11.06 0.0832 0.02872 
leading recipients in 
US dollars in 1990-1994 

3.5 Numbers appeared in Magazines and Newspaper 
Among the data compiled in Benford's original paper [2], "numbers appeared in 

Reader's Digest" attracts our attention. Numbers appeared in a magazine or news­

paper seems random at first glance; its conformance to Benford's law was deemed 

as a coincidence rather a rule. However by referring to the Hill's paper, "selected at 

random and random samples ... then the significant-digit frequencies of the com­

bined sample will converge to the logarithmic distribution" [11], we hypothesize that 
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numbers appeared in Reader's Digest could be considered as a mixture of data of 

different distributions and more specialized magazines containing biased mixture of 

data will deviate from Benford's distribution more significantly. Here numbers ap­

peared in both Innovation (science orientated) and The Economist (current affairs 

orientated, more on social side) were analyzed. It was found that both do not con­

form well to the Benford's distribution, however the combination dataset conforms 

to Benford much better with total variation distance of 0.0474. This supports our 

hypothesis. 

Table 9. Analysis of numbers appeared in magazines 
Numbers appeared in Sample Size x2 dl 

Innovation (Vol. 2 No. 4. 2002) 152 6.57 0.0747 
The Economist (17th May 2003) 449 16.24 0.0788 
Combination of the above two 601 9.22 0.0474 

3.6 Other Datasets 
Other kinds of datasets, which are usually quoted as example of Benford's law 

include: survival distribution [14], the magnitude of the gradient of an image & 
Laplacian Pyramid Code [15], radioactive half-lives of unhindered alpha decays [11]. 

Datasets compiled by Benford in his original paper include: Rivers area, popula­

tion, newspapers, specific heat, molecular weights, atomic weights, Reader's Digest, 

X-Ray volts, American league, addresses, death rate . . . [2] They provide a wide 

range of examples to illustrate Benford's Law, however the certainty of their con­

formance to Benford's law varies largely. 

4. Applications of Benford's Law 
The analysis of first few significant digit frequencies provides us a potential frame­

work to examine the accuracy and authenticity of data values in numerical data 

set. 

4.1 The Design of Computers and Analysis of Roundoff Errors 
Peter Schatte has determined that based on an assumption of Benford input, the 

computer design that minimizes expected storage space (among all computers with 

binary-power base) is base 8 [16], and other researchers have started exploring the 

use of logarithmic computers to speed up calculations [17]. It will be crucial for the 

development of computing science in the information age. 

4.2 A Goodness-of-fit against Benford to Detect Fraud 
A. Rose and J. Rose developed a VBA code for detecting fraud under Excel working 

environment [8]. However the program can only do a first digit test but not a 



first significant digit test (for example, the 1 in 0.150 will not be counted by the 

program), and the program will encounter error upon reading text (not numbers). 

We improved the program to eliminate all the limitations of the original program. 

However, we argue that the use of a goodness-of-fit test against Benford to detect 

fraud is dubious. It has many limitations. Firstly, this method to detect fraud will 

not be accurate if the data in the account has very close built-in maximums and 

minimums. Secondly, a one-off embezzlement or very few entries of amendments 

made in an accounting record will not be detected using Benford's Law. Moreover 

the public or specifically here the fraudsters learn very quickly, after a few cases 

of successful detections of fraud using Benford's law being reported, they may take 

special cares upon changing the entries in the account table in order to conform 

to Benford's law. Therefore, we conclude that Benford's law can only serve as an 

initial strategy to detect fraud and it will become less useful later. 

4.3 Others 
Mark Nigrini mentioned in his paper [4] that Benford's law could be used to test 

the accuracy of measuring equipment. Hill in his paper suggested Benford's law as 

a test of reasonableness of forecasts of a proposed model [9]. 

5. Conclusion 
Among the large range of samples we have analyzed, by using Chi-square test and 

calculating total variation distance and maximum of deviations, Fibonacci series, 

Sequence o:n, population and number in magazines fit Benford's distribution well. 

Fitness to Benford's law of other data such as physical constants and stock prices 

are controversial, and they require further investigations. Two common explanations 

for the origin of Benford's distribution are multiplicative process and scale invari­

ance. One simple multiplicative process cannot reproduce most of natural occurring 

phenomena thus by virtue of multiplicative process it cannot explain the origin of 

Benford's distribution for all datasets that are fit. The understanding of the ori­

gin of scale invariance has been one of the fundamental tasks of modern statistical 

science. How systems with many interacting degrees of freedom can spontaneously 

organize into scale invariant states will be the focus of further research. 

It is generally believed that the more chaotic and diversified the probability dis­

tributions are, the better the overall data set fits the Benford's Law. Thus, we 

put forward a bold conjecture that Benford's Law is an act of nature and can be 

used to indicate the randomness of our world. Therefore it can be related to the 

second thermodynamics law of entropy. This will be an interesting area for further 

investigation. 
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