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1. (Russian Mathematical Olympiad, 2003) Point K is chosen on the diagonal 
AC of the convex quadrilateral ABCD so that KD =DC, LBAC = ~LKDC, 
LDAC = ~LKBC. Prove that either LKDA = LBCA or LKDA = LKBA. 

2. (Czech and Slovak Mathematical Olympiad, 2003) A sequence (xn)~=l of 
integers whose first member x1 = 1 satisfies the condition 

Xn = ±Xn-1 ± Xn-2 · · · ± X1 

for a suitable choice of the signs "+" and "-", for any n > 1; for instance, 
x 2 = -x1, x 3 = -x2 + X1, X4 = X3- x2- x 1, .... For a given n, find all possible 
values of Xn· 

3. (Hong Kong Mathematical Olympiad, 2003) Let n ;::: 3 be an integer. 
In a conference there are n mathematicians. Every pair of mathematicians 
communicate in one of n official languages of the conference. For any three 
different official languages, there exist three mathematicians who communicate 
with each other in these three languages. Determine all n for which this is 
possible. Justify your claim. 

4. (Romanian Mathematical Olympiad, 2003) An integer n, n ;::: 2 is called 
friendly ifthere exists a family A1 , A2 , ... , An of subsets of the set {1, 2, ... , n} 
such that: 

(1) i tJ. Ai for every i E {1,2, ... ,n}; 

(2) i E Aj if and only if j tJ. Ai, for every distinct i,j E {1, 2, ... , n}; 

(3) Ai n Aj is nonempty, for every i,j E {1, 2, ... , n}. 

Prove that n is friendly if and only if n ;::: 7. 

5. (Russian Mathematical Olympiad, 2003) Let f(x) and g(x) be polynomials 
with nonnegative integer coefficients and that m is the largest coefficient of f. 
It is known that for some natural numbers a< b, the equalities f(a) = g(a) and 
f(b) = g(b) are true. Prove that if b > m, then f and g are identical. 

6. (Austrian Mathematical Olympiad, 2002) Let ABCD and AEFG be similar 
cyclic quadrilaterals, whose vertices are labeled counterclockwise. Let P be the 
second common point of the circumcircles of the quadrilaterals beside A, show 
that P must lie on the line connecting B and E. 

7. (Belarusian Mathematical Olympiad, 2003) Given a convex pentagon ABC 
DE with AB = BC, CD= DE, LABC = 150°, LCDE = 30°, BD = 2, find 
the area of ABCDE. 

8. (Korean Mathematical Olympiad, 2003) Show that there exist no integers 
x, y, z satisfying 

9. (Iranian Mathematical Olympiad, 2003) Find the smallest positive integer 
n such that: 

"For any finite set of points in the plane, if for every n points of this set, 
there exist two lines covering all n points, then there exist two lines covering all 
the set." 

10. (Finland Mathematical Olympiad, 2003) 

Players Aino and Eino take turns in choosing numbers from the set {0, 1, ... , 
n }, where n EN is a predetermined number. The game ends when the numbers 
chosen by either player contain a set of four numbers that can be arranged to 
an arithmetic progression. The player whose numbers contain such progression 
wins the game. Show that there exists an n for which the first player has a 
winning strategy. Find the least possible n for which this is possible. 



1. (IMO 2003 shortlisted problems.) Three distinct points A, B, C are fixed 
on a line in this order. Let r be a circle passing A and C whose centre does not 
lie on the line AC. Denote by P the intersection of the tangents to r at A and 
C. Suppose r meets the segment P B at Q. Prove that the bisector of LAQC 
and the line AC intersect at a point which does not depend on the choice of r. 

Solution by Joel Tay Wei En. Let the point 
be R, AQ = x, QC = y. By the angle bisec­
tor theorem, AR/ RC = xjy. Let LP AQ = s, 
LPCQ = t, LAPB = u, LCPB = v. Then s = 
LPAQ = LQCA and t = LPCQ = LQAC. By 
using the sine rule we get 

X y 
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which is independent of r. 
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Also solved by Kenneth Tay Jingyi, Anand B. Rajagopalan, Andre Kueh Ju Lui, 
Ong Xing Congand A. Robert Pargeter. 

2. (Canada Mathematical Olympiad, 2003) Let S be a set of n points in the 
plane such that any two points of S are at least 1 unit apart. Prove there is 
a subset T of S with at least n/7 points such that any two points ofT are at 
least J3 units apart. 

Similar solution by Joel Tay Wei En and Andre Kueh Ju Lui. Let X be a point 
on the boundary of the convex hull of S. We shall show that there is a set Bx 
with most 6 points such that their distances from X are in the range [1, J3). 
Then we can put X in T and consider the setS' obtained by deleting X and Bx. 
By continuing this process, we can construct a set T with at least n/7 points. 

~f 
X 

Now let i! be the line containing X such that all the points in S lie on one 
side of i!. With X as the centre, draw two semicircles with radii 1 and J3. 
Divide the semicircles into 6 equal sectors. Since in each of the 6 regions in 
the shaded area, any two points are at most 1 unit apart, the shaded region 
contains at most 6 points of S. 

3. (German National Mathematical Competition, 1st round, 2003.) Deter­
mine, with proof, the set of all positive integers that cannot be represented in 
the form ~ + ~~i, where a and bare positive integers. 

Similar solution by Joel Tay Wei En, Andre Kueh Ju Lui, Anand B. Ra­
jagopalan, Ong Xing Gong, Kenneth Tay Jingyi, Charmaine Sia Jia Min and 
Daniel Chen Chongli. 
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Let A denote the given expression. Then A = 2~t~a1}b implies b I a. Let 

a= mb, mEN. Then A= m + ~:~1 =2m- r;:-_;1
1 implies b + 1 I m- 1. Let 

m- 1 = n(b + 1), n ~ 0, n E Z. Then A= n(2b + 1) + 2. If n = 0, A= 2. 
If n = 1, then by varying b, we get A = 5, 7, .... We also note that A =/=- 0, 3. 
We are left with even numbers x > 2. A = x if and only if x- 2 = n(2b + 1) 
if and only if x - 2 is a multiple of some odd prime. Thus the required set is 
{ 1, 2k + 2 : k E N}. 

4. (Hong Kong Mathematical Olympiad, 2003) Let p be an odd prime such 
that p _ 1 (mod 4). Evaluate, with reasons, 

t {k2}' 
k=l p 

where {x} = x- lxJ, lxJ being the greatest integer not exceeding x. 

Similar solution by Kenneth Tay Jingyi and Andre Kueh Ju Lui. Since k2 _ 

(p- k)2 (mod p), the set S = {k2 lk = 1, 2, ... , m}, where m = (p- 1)/2, is 
the entire set of quadratic residues (mod p). Also if 1 ::; a ::; b ::; m satisfies 
a 2 b2 (mod p), we get (a+ b)(a- b)_ 0 (mod p). But a+ b::; 2m= p -1, 
therefore a= b. Thus the elements k2 , k = 1, 2, ... , m, are distinct. 

Moreover, by Wilson's theorem, (p- 1)! _ -1 (mod p). Since i(p- i) _ 
-i2 (mod p), we see that ( -1)m(m!)2 _ -1 (mod P} Since m is even, we 
have (m!) 2 = -1 (mod p). Thus if x2 = i, then (m!x) _ -i (mod p). So if 
i E S, then so is p-i. Therefore the answer is (p- 1)/4. 

5. (British Mathematical Olympiad, 2003) Let f : N-----+ N be a permutation 
of the set N of all positive integers. 

(i) Show that there is an arithmetic progression of positive integers a, a+ 
d, a+ 2d, where d > 0, such that 

f(a) < f(a +d) < f(a + 2d). 

(ii) Must there be an arithmetic progression a, a+ d, ... , a+ 2003d, where 
d > 0 such that 

f(a) < f(a +d) < · · · < f(a + 2003d)? 

Similar solution by Kenneth Tay Jingyi, Joel Tay Wei En, Charmaine Sia Jia 
Min and Andre Kueh Ju Lui. 

(i) Assume on the contrary that no such AP exists. Let m be the positive 
integer such that f(m) = 1. Then f(m+ 1) > f(m+2) otherwise m, m+ 1, m+2 
is such an AP. Similarly, f(m+2) > f(m+4) > f(m+8) > · · ·. But this means 
there is an infinite sequence of strictly decreasing positive integers. This gives 
rise to a contradiction. So such an AP must exist. 

(ii) Consider the following permutation where f ([2k, 2k+I)) = [2k, 2k+1 ) 

and f is decreasing in the interval. Thus 

/(1) = 1; /(2) = 3, f(3) = 2; /(4) = 7, /(5) = 6, f(6) = 5, !(7) = 8; etc. 

If such an AP exists, then each of the following intervals contain at most one 
term of the AP: 

[1, 2), [2, 4), [4, 8), ... , [2k, 2k+I ), where a+ 2003d E [2k, 2k+I ). 

Since a+ 2001d::; 2k-1 - 1, we see that d ~ 2k-2 + 1. Thus a+ 2003d ~ 2k+I, 
a contradiction. 
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6. (Vietnam Mathematical Olympiad, 2003) Two circles r 1 and r 2 with cen­
tres 0 1 and 0 2 , respectively, touch each other at the point M. The radius of 
r 2 is larger that of r 1 . A is a point on r 2 such that the points 0 1 , 0 2 and A 
are not collinear. Let AB and AC be tangents of r 1 with touching points B 
and C. The lines M B and MC meet r 2 again at E and F, respectively. Let D 
be the point of intersection of the line EF and the tangent to r 2 at A. Prove 
that the locus of Dis a straight line when A moves on r 2 so that 0 1 , 0 2 and 
A are not collinear. 

Solution by Calvin Lin. Let N E and N A be tangents to r 2 . M is the centre of 
the homothety that takes r 1 o r 2. Thus the tangent of r 1 at B is parallel to 
the tangent of r2 atE, i.e., NE II AB. Thus L.BAE = L.AEN = L.EMA, and 
whence N A is tangent to the circumcircle of 6BAM. Thus, by considering the 
power of E with respect to the circumcircle, EA2 = EB.EM. Thus the powers 
of E with respect to r 1 and r 3 , the point circle A, are equal. The same goes 
for F, i.e., EF is the radical axis of r 1 and r 3 . Since the radical axes of r 1 and 
r 2 is the tangent at M and that of r 2 and r 3 is the tangent at A, we see that 
D lies on the tangent at M. 
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Conversely, let X be any point on the tangent of r 2 at M. Let X A be the other 
tangent. With B, C, E, F as defined, the above argument shows that E, F, X are 
collinear. Thus every point on the tangent at M satisfies the required properties. 
Thus the locus is the tangent at M. 

The same proof works when r 1 and r 2 are externally tangent to each other. 

7. (Hong Kong Mathematical Olympiad, 2003) Two circles intersect at points 
A and B. Through the point B a straight line is drawn, intersecting the first 
circle at K and the second circle at M. A line parallel to AM is tangent to the 
first circle at Q. The line AQ intersects the second circle again at R. 

(a) Prove that the tangent to the second circle at R is parallel to AK. 

(b) Prove that these two tangents are concurrent with KM. 



Solution by Anand B. Rajagopalan. (a) Let RY be the tangent at R and C 
be the intersection of K M with the tangent at Q. By the alternate segment 
theorem and the fact that CQ II AM, we have L_QBA = L_CQA = L_QAM. 
But L_QAM = 180°- L_M AR = 180°- L_M BR = L_K BR. Therefore L_QBA = 
L_KBR and L_QBK = L_ABR. But L_QBK = L_QAK and L_ABR = L_ARY = 
L_QRY. Therefore L_QAK = L_QRY whence AK II RY. 

(b) We have 

L_QCB = L_BMA = L_BRA = L_QRB 

and therefore Q, B, R, C are concyclic. Let RY intersect M K at D. Then 

L_RDB = L_AKB = L_AQB = L_RQB 

and therefore R, Q, Q, B are concyclic. Since C and D both lie on M K, they 
are the same point and we are done. 

Also solved by Andre Kueh Ju Lui, Kenneth Tay Jingyi and Daniel Chen Chongli. 

8. (Belarussian Mathematical Olympiad, 2003) Let 

where p and q are positive integers. 

(a) Given that a1 = a2, prove that 3n is a perfect square. 

(b) Prove that there exist infinitely many pairs (p, q) of positive integers p 
and q such that the equality a 1 = a2 is valid for the polynomial p(x). 

Solution by A. Robert Pargeter. (a) Since 

p(p- 1) 
(x + 1)P = xP + pxp-1 + 2 xp-2 + ... ' 

1 9q(q- 1) 2 (x- 3)q = xq- 3qxq- + 
2 

xq- + · · ·, 

we have n = p + q, a 1 = p - 3q, a2 = 9q
2 
-9q+~

2 

-p-6pq. Therefore 

a1 = a2 {::} 2p- 6q = 9q2 
- 9q + p 2 

- p- 6pq {::} (3q- p)2 = 3(p + q). 

Since n = p + q, we are done. 

(b) Let p = 36t2 =f 3t, q = 12t2 ± 3t, where t E N. Then 

(3q- p) 2 = 144t2 = 3p + 3q. 

Thus a 1 = a2. Since this is true for any t, the proof is complete. 

Also solved by Andre Kueh Ju Lui, Joel Tay Wei En, Kenneth Tay Jingyi, 
Daniel Chen Chongli and Anand B. Rajagopalan. 

9. (Russia Mathematical Olympiad, 2003) Find the greatest natural number 
N such that for any arrangement of the natural numbers 1, 2, ... , 400 in the 
cells of a 20 x 20 square table there exist two numbers located in the same row 
or in the same column such that their difference is not less than N. 
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Similar solution by Kenneth Tay Jingyi and Andre Kueh Ju Lui. The following 
array shows that N :S 209: 

1 2 
11 12 

191 192 

10 201 202 
20 211 212 

200 391 392 

210 
220 

400 

Next we shall prove that N ~ 209 which would then give the conclusion that 
N = 209. Consider the numbers 1, 2, ... , 91. Suppose they occupy n rows and m 
columns. Then mn ~ 91, whence m+n ~ 2yrnn > 19. Thus n+m ~ 20. Now 
suppose that the numbers 300,301, ... , 400 occupy i rows and j columns. Then 
similar consideration shows that i+j ~ 21. Thus there is a row or a column that 
contains a number from {1, 2, ... , 91} and a number from {300, 301, ... , 400}. 
This shows N ~ 209 and we are done. 

10. (Czech and Slovak Mathematical Olympiad, 2003) Find all possible values 
of the expression 

a2b2 + a2c2 + b2c2' 

where a, b, c are the lengths of the sides of a triangle. 

Solution by Joel Tay Wei En. 

Let X denote the given expression. Since (a2-b2)2+(b2-c2)2+(c2-a2)2 ~ 
0, we have X ~ 1, with equality if and only if a = b = c. 

By cosine rule, we have 2bc > lb2 + c2 - a21, since cos A=/= 1. Similarly, we 
have 2ab > la2 + b2 - c21, and 2ac > la2 + c2 - b2l. Square both sides in each 
expression and sum, we get 

Hence X < 2 and therefore X E [1, 2). To see that X assumes every value 
k E [1, 2), in the interval, we let a= b = 1 and c = y2

. This yields the quadratic 
equation p(y) = y2

- 2ky + (2- k) = 0. Since p(1) :::; 0 and p(y) is positive for 
large y, this equation has a solution. Thus there exists c such that 

If we allow degenerate triangle, then the range is extended to [1, 2]. 

Also solved by A. Robert Pargeter. 


