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Editor's note: 

Starting from this issue of 

the Medley, we will publish a 

series of notes on Graphs and Their 

Applications by Prof Koh Khee Meng. 

In these notes, Prof Koh will introduce 

some basic concepts and fundamental 

results on Graph theory, and show also 

their applications to problems in other 

areas. In addition, relevant problems 

with different degree of difficulty 

will be set for interested 

readers to have a go at 

them. 
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Graphs 
and Their Applications (1) 

1. The Konigsberg Bridge Problem 
In an odd city of Eastern Prussia, called Konigsberg, there was a river, called 

River Pregel, flowing through its centre. In the 18th century, there were seven 
bridges over the river connecting the two islands and two opposite banks separated 
by the river as shown in Figure 1.1. It was said that the people in the city had 
always amused themselves with the following problem: Starting with any one of the · 
places A, B, C or D as shown in Figure 1.1, is it possible to find a route which 
passes through each of the seven bridges once and exactly once, and return to where 
you start? 

Leonhard Euler (1707-1783) 

first studied for the clergy at 

the Swiss university in Besel. 

In there Johann Bernoulli no-

ticed his talent in mathe-

matics and encouraged him 

to change his career. Euler 

became one of the greatest 

mathematicians of all time 

and one of the founders of the 

field known as topology. 
Figure 1.1 picture taken from Mathematics, Life Science Library, Time Inc. 

No one could find such a route; and after a number of tries, many people 
believed that it is not possible, but no one could prove it either. 

Leonhard Euler (1707-1783), the greatest mathematician that Switzerland has 
ever produced, was told of the problem. He found the problem interesting and real­
ized that the problem is very much different in nature from problems in traditional 
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geometry. He studied the problem and generalized it to a more general problem 
regardless of the number of islands and banks, and the number of bridges linking 
them, and finally solved the general problem. His finding was contained in an article 
entitled "The solution of a problem relating to the geometry of position" published 
in 1736. As a special case of his finding, he deduced the impossibility of finding such 
a route first time from mathematical point of view. 

How did Euler generalize the Konigsberg Bridge Problem? How did he solve 
his more general problem? What is his finding? We shall answer these questions in 
due course. 

2. Multigraphs and Graphs 
Euler noticed that the Konigsberg Bridge Problem has nothing to do with tra­

ditional geometry where measurements of lengths and angles, and relative positions 
of vertices count. How big the islands and banks are, how long the bridges are, and 
whether an island is at the south or north of a bank are immaterial. The key factors 
are whether the islands or banks are linked by a bridge, and by how many bridges. 
Euler thus used vertices to represent the islands and banks, one for each island and 
bank, and two vertices are joined by kedges, where k;::: 0, when and only when the 
islands or banks represented the vertices are linked by k bridges. In particular, the 
situation for the Konigsberg Bridge Problem is represented by the model of Figure 
2.1. 

A 

c 

Figure 2.1 

The model of Figure 2.1 is now known as a multigraph. In general, a multi­
graph is a set of vertices in which some pairs are joined by an edge, or a number 
of edges. For instance, in the multigraph of Figure 2.1, the vertices A and C are 
joined by no edge, the vertices B and D are joined by an edge, and the vertices B 
and C are joined by two edges. A multigraph can conveniently represented by a 
diagram as shown in Figure 2.1, where vertices are represented by small circles or 
dots, and edges by line segments or curves. The relative positions of vertices and 
the lengths of line segments or curves are immaterial. Only the linking relations 
among the vertices and the number of links joining two vertices that count. Thus 
the situation for the Konigsberg Bridge Problem can equally well be represented by 
the multigraph of Figure 2.2 
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Figure 2.2 

More examples of multigraphs are shown in Figure 2.3. 

X 0 
(a) (b) (c) (d) 

(e) (f) (g) 

Figure 2.3 

Among the multigraphs shown in Figure 2.3, only the multigraph (a) has the 
feature that some pairs of vertices are joined by at least two edges. In each of the 
multigraphs (b)-(g), every two vertices are joined by at most one edge. We also call 
these multigraphs (b)-(g) simple graphs or, simply, graphs. Thus every graph is 
a multigraph, but not conversely. Note that no edge is allowed to join a vertex to 
itself. 

Let us proceed to learn some basic terms on multigraphs that will be found 
useful later. For a multigraph G, let V(G) denote the set of its vertices and E(G) 
the set of its edges. Two vertices in G are said to be adjacent if they are joined by 
an edge in G. A vertex u is said to be incident with an edge e in G if u is joined 
by e to some vertex. As an example, consider the multigraph G of Figure 2.4. It 
has 7 vertices and 12 edges, and 

V(G) = {a,b,c,j,g,h,k}, E(G) = {e1,e2, ... ,e12}. 
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Figure 2.4 

The vertices a and k are adjacent, but a and bare not. The vertex a is incident 
with the edge e1 but not e3. The vertices a and k are joined by the edge e1. We may 
write e1 = ak, and call a and k the two ends of e1. Note that the vertex a is incident 
with the least number of edges and the vertex k is incident with the most number of 
edges. In connection with these, there is a very important number associated with 
each vertex in a multigraph. The degree of a vertex v in a multigraph G, denoted 
by d(v), is the number of edges incident with v in G. There are 7 edges incident 
with k, and so we write d(k) = 7. The degrees of the 7 vertices in the multigraph 
of Figure 2.4 are shown below. 

vertex a b c f g h k 
degree 1 2 3 4 3 4 7 

3. Special Families of Graphs 

In this section, we confine ourselves to graphs and introduce some important 
families of graphs. 

(1) Pn: the path with n vertices, n ;::: 2. 

(2) Sn: the star with n vertices, n;::: 4. 

* 



(3) Cn: the cycle with n vertices, n 2::: 3. 

c,, <) 0 
(4) Kn: the complete graph with n vertices, n > 2 (a graph in which every 2 
vertices are adjacent). 

(5) A graph G is called bipartite if its vertex set V (G) is the union of two nonempty 
disjoint sets V1 and V2 such that every edge of G has one end in V1 and the other 
end in V2 • Some examples of bipartite graphs are shown below. 

Note that the bipartite graph H3 has an additional feature that every vertex in 
V1 is adjacent to every vertex in V2 . We call H 3 a complete bipartite graph and 
denote it by K(2, 4) as there are 2 vertices in V1 and 4 vertices in V2 . Some other 
examples of complete bipartite graphs are shown below. 

K(2,5): 

4. Degrees 
Recall that the degree d( v) of a vertex v in a multigraph is the number of edges 

incident with v. The degree of v is also called the valency of v as it is related to 
the valency of an atom in chemical compounds as shown in Figure 4.1. 
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Butane and Isobutane, C4H1o 

Figure 4.1 

H 

H 

H H 
Cyclohexane, C5H12 

Exercise 1. Find the degree of each vertex in the following graph: 

c z 

Figure 4.2 

H 

H 

A vertex vis called an isolated (respectively, end-) vertex if d(v) = 0 (respec­
tively, d(v) = 1). Thus in the graph of Figure 4.2, w is an isolated vertex while x 
and z are end-vertices . 

Exercise 2. A group of 7 people attended a party and various handshakes took 
place. No one shook hands with the same person more than once, and no one shook 
his/her own hand. Are there at least two people in the group who had the same 
number of handshakes? 

Exercise 3. Mr. and Mrs. Tan attended a party at which there were 3 other couples. 
Various handshakes took place. No one shook hands with his/her spouse, no one 
shook hands with the same person more than once, and of course no one shook 
his/her own hand. After all the handshaking were finished, Mr. Tan asked each 
person, including his wife, how many hands he or she had shaken. To his surprise, 
each gave a different answer. How many hands did Mrs. Tan shake? 

Exercise 4. Consider the graph G of Figure 4.2. What is the sum 

d(a) + d(b) + d(c) + d(e) + d(g) + d(w) + d(x) + d(y) + d(z)? 

How many edges are there in G? Is there any relation between these two answers? 

---------------------------''/lrdffliifii'W»o~;. •~• 



A vertex v in a multigraph is said to be even (respectively, odd) if d(v) is even 
(respectively, odd). 

Exercise 5. In the graph of Figure 4.2, how many odd vertices are there? Can you 
construct a multigraph which contains exactly 1 odd vertex (respectively, exactly 3 
odd vertices)? 

In Exercise 4, the total sum of the degrees of the vertices is 24 and there are 12 edges 
in the graph. Notice that 24 = 2 · 12. In general, is it true that the total sum of 
the degrees of the vertices in any multigraph is double the number of edges in that 
multigraph? Yes! It is true in general. Indeed, to count the total sum, we count 
each edge twice, once for each end of the edge. This simple but useful observation, 
known as Euler's Handshaking Lemma (1736), is stated below. 

Euler's Handshaking Lemma Let G be a multigraph with V (G) = { v1, v2, · · · , Vn} 
and containing exactly m edges. Then 

n 

Ld(vi) =2m. 
i=l 

In Exercise 5, you would not be able to construct a multigraph having exactly 1 
odd vertex (respectively, 3 odd vertices). Why? We leave it to you to deduce the 
following observation from the above lemma. 

Corollary The number of odd vertices in any multigraph is always even. 

Exercise 6. A graph G has 8 vertices and 15 edges. Every vertex in G is of degree 
3 or 5. How many vertices of degree 5 does G have? Construct one such graph G. 

Exercise 7. A graph H has 10 vertices. The degree of each vertex is between 3 and 
5 inclusive. Not every vertex is even. No two odd vertices are of the same degree. 
How many edges are there in H? 

A graph is said to be regular if every vertex of the graph has the same degree. 
More precisely, a graph G is said to be k-regular if d(v) = k for any vertex v in G. 
Two regular graphs are shown in Figure 4.3. The C5 is 2-regular while the other is 
3-regular. 

0 
Figure 4.3 
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Exercise 8. Which graphs introduced in Section 3 are regular? 

Exercise 9. Suppose G is a k-regular graph with n vertices and m edges. Find a 
relation among k, nand m. 

Does there exist a 3-regular graph with eight vertices? 
Does there exist a 3-regular graph with nine vertices? 


