
t 
l 
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lympiad, 2002 and 4Yd International Mathematical Olympiad 

held in Glasgow, United Kingdom, July 2002. 

Please send your solutions of these Olympiads to me at the address 

given. All correct solutions will be acknowledged. We also present 

solutions of Canadian Mathematical Olympiad 1993, as well the 

problems used to select the Singapore Team to the 2002 

International Mathematical Olumpiad. 



Volume 29 No. 2, December 2002 

43rd Czech (and Slovak) Mathematical Olympiad, 1994 

1. Let N be the set of all natural numbers and f : N --+ N a function which 
satisfies the inequality 

f(x) + f(x + 2) ~ 2f(x + 1) for any x EN. 

Prove that there exists a line in the plane which contains infinitely many 
points with coordinates ( n, f ( n)). 

2. A cube of volume V contains a convex polyhedron M. The perpendicular 
projection of Minto each face of the cube coincides with all of this face. What 
is the smallest possible volume of the polyhedron M? 

3. A convex 1994-gon M is drawn in the plane together with 997 of its 
diagonals drawn. Each diagonal divides Minto two sides. The number of 
edges on the shorter side is defined to be the length of the diagonal. Is it 
possible to have 

(a) 991 diagonals of length 3 and 6 of length 2? 

(b) 985 diagonals of length 6, 4 of length 8 and 8 of length 3? 

4. Let a1 , a2 , ... be an arbitrary sequence of natural numbers such that 
for each n, the number (an - 1)(an - 2) ... (an - ,n2) is a positive integral 
multiple of nn

2
-

1 . Prove that for any finite set P of prime numbers, the 
following inequality holds: 

5. Let AA1 , BB1 , CC1 be the heights of an acute-angles triangle ABC (i.e., 
A1 lies on the line BC and AA1 _l BC, etc.) and V their intersection. If the 
triangles AC1 V, BA1 V, CB1 V have the same areas, does it follow that the 
triangle ABC is equilateral? 

6. Show that from any quadruple of mutually different numbers lying in 
the interval (0, 1) it's possible to choose two numbers a =/= b in such a way 
that 

a b 1 
y(1- a2)(1- b2) >-+-- ab- -. 

2b 2a 8ab 



Ukrainian Mathematical Olympiad, 2002 

Selected problems. 

1. (9th grade) The set of numbers 1, 2, ... , 2002 is divided into 2 groups, 
one comprising numbers with odd sums of digits and the other comprising 
numbers with even sums odd digits. Let A be the sum of the numbers in 
the first group and B be the sum of the numbers in the second group. Find 
A-B. 

2. (9th grade) What is the minimum number of the figure c€P that we 

may mark on the cells of the (8 x 8) chessboard so that it's impossible to 
mark more such figures without overlapping? 

3. (lOth grade) Let A1, B1, C1 be the midpoints of arcs BC, CA, AB of the 
circumcircle of 6ABC, respectively. Let A2 , B 2 , C2 be the tangency points 
of the incircle of 6ABC, with sides BC, CA, AB, respectively Prove that the 
lines A1A2, B1B2, C1 C2 are concurrent. 

4. (lOth grade) Find the largest K such that the inequality 

1 1 1 1 K 
..,.-----+-+-+->--;:===== 
(x+y+z) 2 x2 y2 z2 - .J(x+y+z)xyz 

holds for all positive x, y, z. 

5. (11th grade) Solve in integers the following equation 

n 2002 = m(m + n)(m + 2n) · · · (m + 200ln). 

6. (11th grade) Find all f : lR-----+ lR such that for all x, y E IR, 

f(x)f(x + y) + 2f(x + 2y) + f(2x + y)f(y) = x4 + y4 + x2 + y2
. 

7. (11th grade) Let C1, A1, B1 be the points at the sides of a given acute 
6ABC such that A1B = A1C1, A1C = A1B1. Let h be the incentre 
of 6A1B1 C1 and H be the orthocentre of 6ABC. Prove that the points 
B1, C1, h, H are concyclic. 

8. (11th grade) Let a1, a2, ... , an, n 2:: 1, be real numbers 2:: 1 and A = 
1 + a1 +···+an. Define Xk, 0 ~ k ~ n by 

x 0 = 1, 

Prove that 

+~"Jt~'-
~ 11} ~ 
f. ~ ~ 

======~--------------------------------------~~ M E D L E Y 
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43rd International Mathematical Olympiad 

Glasgow, United Kingdom, July 2002 

I. Let n be a positive integer. letT be the set of points (x, y) in the plane 
where x and y are non-negative integers and x + y < n. Each point of T is 
coloured red or blue. If a point (x,y) is red, then so are all points (x',y') 
ofT with both x' :::; x and y' :::; y. Define an X-set to be a set of n blue 
points having distinct x-coordinates, and a Y-set to be a set of n blue points 
have distinct y-coordinates. Prove that the number of X -sets is equal to the 
number of Y-sets. 

2. Let BC be a diameter of the circle r with centre 0. Let A be a point 
on r such that 0° < L.AOB < 120°. Let D be the midpoint of the arc AB 
not containing C. The line through 0 parallel to DA meets the line AC at 
J. The perpendicular bisector of OA meets ratE and at F. prove that J 
is the incentre of the triangle C E F. 

3. Find all pairs of integers m, n ~ 3 such that there exist infinitely many 
positive integers a for which 

is an integer. 

4. Let n be an integer greater than 1. The positive divisors of n are 
d1, d2, ... , dk, where 

DefineD= d1d2 + d2d3 + · · · + dk-ldk. 

(a) Prove that D < n 2. 

(b) Determine all n for which D is a divisor of n 2. 

5. Find all functions f from the set lR of real numbers to itself such that 

(f(x) + f(z)) (f(y) + f(t)) = f(xy- zt) + f(xt + yz) 

for all x, y, z, t E JR. 

6. Let rb r2, ... , r n be circles of radius 1 in the plane, where n ~ 3. 
Denote their centres by 01, 02, ... , On, respectively. Suppose that no line 
meets more than two of the circles. Prove that 



Canadian Mathematical Olympiad 1993 

1. Determine a triangle whose three sides and an altitude are four consecu­
tive integers and for which this altitude partitions the triangle into two right 
triangles with integer sides. Show that there is only one such triangle. 

Solved by Zhao Yan (Raffles Institution), Charmaine Sia (Raffles Girls' School) 
and Colin Tan Weiyu (Raffles Junior College). We present Tan's solution. 

Let the sides of the triangle be a, b, c and the 
altitude to the side c be h (see figure). Then 
a, b, c :::; h + 3 and 

Squaring and simplifying, we get 

h2 
- 18h - 4 :::; 0, or h :::; 18. 

b 

c 

The only Pythagorean triples (p, q, r) with min{p, q} :::; 18 and r :::; 21 
are: 

(3, 4, 5), (6, 8, 10), (9, 12, 15), (12, 16, 20), (5, 12, 13), (8, 15, 17). 

The altitude h belongs to 2 different such triples. Thus h = 12, a = 13, 
b = 15, c = 14. 

2. Show that the number x is rational if and only if three distinct terms 
that form a geometric progression can be chosen from the sequence 

X, X+ 1, X+ 2, X+ 3, · · ·. 

Solved by Charmaine Sia (Raffles Girls' School) and Colin Tan Weiyu (Raf­
fles Junior College). Their solutions are similar. Without loss of generality, 
we can assume that x is the first of the required three distinct terms. First 
we suppose that there exist integers m < n such that x, x + m, x + n form a 
geometric progression. Then it follows from 

x+m x+n 
x x+m 

~~MJI~ 
~ 11, ~ 
-t T ~ 

========-=--------------------------------------~--MEDLEY 
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+tJMJf~ 
~ u} ~ 
• T ift, 

that x = m2
2 

which is rational. n- m 

Conversely, suppose x = p / q is rational with p, q integers. Let m = p 
and n = pq + 2p. Then x, x + m, x + n form a geometric progression with 
common ratio q + 1. 

3. In triangle ABC, the medians to the sides AB and AC are perpendicular. 
Prove that cot B + cot C ;::: ~. 

Solved by Charmaine Sia (Raffles Girls' School) and Colin Tan Weiyu (Raf­
fles Junior College). Their solutions are similar. Note that the intersec­
tion of the two medians is the centroid M. Let L.ABM = f31 ,L.CBM 
{32 ,L.BCM = a 2 ,L.ACM = a1, With the notation in the figure, we have: 

a 
tanf31 = 

2
b, 

a 
tanf32 = b' 

Thus 

B 
tanf31 + tanf32 

tan = ----,----
1 - tan fJ1 tan fJ2 

3ab 

3ab 
tan C = 2a2 - b2 . 

Therefore 

b 
tan/1 = 2a' 

a2 + b2 2ab 2 
cot B + cot C = 

3
ab > - = -. - 3ab 3 A 

b 
tan12 = -. 

a 

B 

4. A number of schools took part in a tennis tournament. No two players 
from the same school played against each other. Every two players from 
different schools played exactly one match against each other. A match 
between two boys or between two girls was called a single and that between 
a boy and a girl was called a mixed single. The total number boys differed 
from the total number of girls by at most 1. The total number of singles 
differed from the total number of mixed singles by at most 1. At most how 
many schools were represented by an odd number of players? 

Solved by Calvin Lin Ziwei (Hwachong Junior College) and Charmaine Sia 
(Raffles Girls' School). We present Calvin Lin's solution. Let bi and 9i de­
note the number of boys and girls, respectively, from the ith school. Suppose 
s and m, respectively, denote the total number of singles and mixed singles 
played. Further let di = bi - gi. Then 

M E D L E Y ------------------------------------============= 



From the given condition, we have 

I Ldidjl ~ 1. 
i<j 

Since 

2:d7 = (l:di) 2

- 2 l:didj ~ 3 
i i i<j 

it follows that at most 3 values of di can be different from 0. Since bi + 9i 
is odd if and only if di is odd, the maximum number of schools with an odd 
number of participants is 3. It is easy to check that a tournament with 3 
schools only, two with only 1 girl player and the last with only 1 boy player, 
satisfy the required conditions. Thus the answer is 3. 

5. Let Yl, Y2, y3, ... be a sequence such that Y1 = 1 and, fork > 0, is defined 
by the relationship: 

if k is even 
if k is odd 

if k is odd 
if k is even. 

Show that the sequence Y1, Y2, Y3, ... takes on every positive integer value 
exactly once. 

We present the solution by Gideon Tan (Raffles Junior College). Similar 
solutions are also obtained by Charmaine Sia (Raffles Girls' School), Colin 
Tan Weiyu (Raffles Junior College) and Zhao Yan (Raffles Institution). 

We shall prove by induction that 

{ .. - 2n 2n+l 1} - {2n 2n+l 1} Yi · ~ - , · · · , - - , · · · , - · 

It is trivially true for n = 1. Now we assume that it's true for some n ~ 1. 
Consider the case n + 1. We first note that: 

max{yi : i = 2n+l' ... '2n+2 - 1} = 2n+2 - 1, 

min{yi: i = 2n+l' ... '2n+2- 1} = 2n+l. 

Next we note that Yi =/= Yi if 2n+l ~ i < j ~ 2n+2 - 1. Therefore 

{y . . ,; = 2n+l 2n+2 _ 1} = {2n+l 2n+2 _ 1} 
t . • ' •.. ' ' ... ' • 

This completes the proof by induction. 

~~M-t~~ 
~ 11 (') 
< > 
~ ~ 

===-----------------------------------------------~-- M E D L E Y 
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Singapore IMO National Team Selection Tests 2002 

Note: Problems 1 to 6 were used to select the national team trainees. The 
last 11 problems were used to select the final team of 6 to represent Singapore 
at the International Mathematical Olympiad to be held at Glasgow, United 
Kingdom in July 2002. 

1. Let A, B, C, D, E be five distinct points on a circle r in the clockwise 
order and let the extensions of CD and AE meet at a point Y outside r. 
Suppose X is a point on the extension of AC such that X B is tangent to r 
at B. Prove that XY = XB if and only if XY is parallel DE. 

Solution. Suppose XY = X B. Then 

XY 2 =XB2 =XC · XA 

so that XY: XC= XA: XY. This shows 
that D. X CY c:::: D.XY A. Hence 

LEDY = LXAY = LXYC. 

Therefore, XY is parallel to DE. The con­
verse is similar. 

2. Let n be a positive integer and (x1 , x2 , ... , x2n), Xi = ±1, i = 1, 2, ... , 2n 
be a sequence of 2n integers. Let Sn be the sum 

If On is the number of sequences such that Sn is odd and En is the number 
of sequences such that Sn is even, prove that 

Solution. We can· prove by induction that On 
En= 22n-l + 2n-l. We merely have to note that 

22n-1 - 2n-1 and 

3. For every positive integer n, show that there is a positive integer k such 
that 

2k2 + 2001k + 3 = 0 (mod 2n). 

Solution. We show more generally that ak2 + bk + c = 0 (mod 2n) has a 
solution for all n whenever b is odd and a or cis even. For n = 1, take k = 0 if 
cis even and k = 1 if cis odd. Now suppose the claim is true for all n. If cis 



even, then, by assumption, the congruence 2at2 +bt+c/2 _ 0 (mod 2n) has 
some solution t. Letting k = 2t we get ak2 + bk + c = 2(2at2 + bt + c/2) - 0 
(mod 2n+1 ). If c is odd, then a is even, so a+ b + c is even; hence, by 
assumption, the congruence 2at2 + (2a + b)t +(a+ b + c)/2- 0 (mod 2n) 
has some solution t. Letting k = 2t + 1 yields 

ak2 + bk + c = 2[2at2 + (2a + b)t +(a+ b + c)/2] _ 0 (mod 2n+l ). 

Thus, whether cis even or odd, the claim is true for n+ 1, and so by induction 
for all n. 

4. Let x 1 , x2 , x 3 be positive real numbers. Prove that 

Solution. Consider the function f(x) = x312 for x > 0. f"(x) = Tx > 0 
for x > 0. Hence, f is concave upward. By Jensen's Inequality, for any three 
positive numbers Z1, z2, z3, 

Now take z1 = xf, z2 = x~ and z3 = x~. We have 

That is 

5. For each real number x, l x J is the greatest integer less than or equal 
to x. For example l2.8J = 2. Let r ~ 0 be a real number such that for all 
integers m,n, min implies lmrJilnrJ. Prove that r is an integer. 

Solution. Suppose r is not an integer, choose an integer a such that lar J 
is an integer greater than 1 while ar itself is not an integer. Let k be the 
unique integer such that 

1 1 
-- < ar - l ar J < -. 
k+1- k 

Then 
k+1 

1 ~ (k + 1)(ar- larJ) < -k-. ~ 2. 

~~"~~~ 
~ 11~ ~ 
~ I ~ttr 

============------------------------------------~-- M E D L E Y 
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•f,""'~ 
lot;~~ ...: ll ~ .. ~ 

Since 

l(k + 1)ar J = (k + 1)lar J + l(k + 1)(ar- lar J)J = (k + 1)lar J + 1 

we see that larJ does not divide l(k+1)arJ. Thus m =a, n = (k+1)a form 
a counter example. 

6. Find all functions f: [O,oo) ~ [O,oo) such that j(f(x)) + f(x) = 12x, 
for all x ~ 0. 

Solution. Fix any x ~ 0. Let j[0l(x) = x and j[1l(x) = f(x). For n ~ 1, let 
j[nl(x) = j(j[n-lJ(x)). Then the above functional equation gives 

Solving this difference equation, we have 

Using the initial conditions j[0l(x) =X and j[1l(x) = f(x), we have cl = 
(f(x) + 4)/7 and C2 = (3x- f(x))/7. Therefore, 

1 1 
j[nl(x) = ;;U(x) + 4)3n + ;;(3x- f(x))(-4t. 

Since f(x) ~ 0, j[nl(x) ~ 0 for all n ~ 0. By taking n to be even, we have 
~(f(x)+4)3n+~(3x- f(x))4n ~ 0. From this, 3x- f(x) ~ 0. By taking n to 
be odd, we have ~(f(x)+4)3n-~(3x- f(x))4n ~ 0. From this, 3x- f(x):::; 0. 
Consequently, f ( x) = 3x. One can easily verify that f ( x) = 3x satisfies the 
given functional equation. 

7. Let P a point on the extension of the diagonal AC of rectan~e ABCD 
beyond C, such that LBPD = LCBP. Determine the value of ~c· 

Solution . Set up a coordinate system as shown in the diagram below, where 
s>1 

P(s, as) 

A(O, 0) 

M E D L E Y -----------------------------------------------===~ 



Let 

Simplifying, we have 

a2 [(k- 1)s2 + k- 2ks] + (k- 1)(s- 1) 2 = 0. (1) 

Now we make use of the condition that L.BPD = L.CBP. In other words, 

That is, 
(0, a) · (s- 1, as) 

a 
(s- 1, as) · (s, as- a) 

v s2 + (as - a )2 

Simplifying, we have a2 (s2
- 4s + 2) + (s -1) 2 = 0. Combining this with 

(1), we have (k- 2)(2s- 1) = 0. Since s > 1, we see that k = 2. 

8. Let a 1 , a2 ... , an be positive real numbers and let A= 2:= ai. Prove that 

"""' ai > _n_ 
L.....t 2A - ai - 2n - 1 · 

Solution. (Meng Dazhe (Raffies Junior College)) Let Xi = 2A- ai . Then 
Xi > 0 for all i. Hence, using AM 2': H M, we have 

L 2A a~ ai = L 2A x~ Xi = 2A L ( :i) - n 

2An2 2An2 n 
> -n= -n= . 
- X1 + X2 + · · · + Xn (2n- 1)A 2n- 1 

9. Suppose the sum of m pairwise distinct positive even numbers and n 
pairwise distinct positive odd numbers is 2002. What is the maximum value 
of 3m+ 4n? 

Solution. Let a1 > a2 > · · · >am be the even numbers and b1 > b2 > · · · > 
bn be the odd numbers. Then 

Therefore 

l:=ai 2': 2 + 4 +· .. +2m= m(m + 1) 

l:=bi 2': 1 + 3 + · · · + (2n- 1) = n2 

2002 = l:=ai + l:=bi 2': m(m + 1) + n2. 

n:::; )2002- m(m + 1). 

~t.M-1)>~ 
~ ll9 ~ 
'$ I ('-., 

~========--------------------------------------- M E D L E Y 
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Thus 
3m+ 4n::; 4)2002- m(m + 1) +3m. 

Write y = 3m + 4n, we get 

25m2 - (6y- 16)m + y2
- 2002 x 16::; 0 

The discriminant 

~ = (6y- 16)2
- 100(y2

- 2002 X 16) ~ 0. 

Hence 
y2 + 3y- 50054::; 0. 

Note that y > 0. Thus 

0 < y < - 3 + 5v's009 < 222.3 
- 2 

So max y = 222. 

This maximum value of 3m+4n can be easily achieved by taking for ex­
ample 26 even numbers: 2, 4, 6, ... , 48, 50,56 and 36 odd numbers 1, 3, 5, ... , 69, 71. 
Their sum is 2002 and 3m+ 4n is exactly 222. 

10. Determine the number of positive integers that can be expressed in the 
form 

1 2 2002 
-+-+···+--, 
a1 a2 a2oo2 

wher~ a1, a2 ... , a2oo2 are positive integers. 

Solution 1. One can use induction on k to prove that 

can take all integer values in the interval [1, (k~1 )]. 

The assertion is obviously true for k = 1 and 2. Suppose the assertion 
is true when k = t. 

(1) Take at+1 = 1. By induction hypothesis, ...l. + ..1... + · · · + ..L can take 
al a2 at 

all integer values in [1, (t+2
1
)]. Thus, ...l. + ..1... + · · · + 1..H. can take all integer 

a1 a2 at+l 

values in [t + 2, (tt2
) ]. 

(2) Take at+1 = t + 1. By induction hypothesis, ...l. + ..1... + · · · + 1..H. can 
a1 a2 at+l 

take all integer values in [2, Ct1
) + 1]. 

(3) Take ai = (t+2
1

) for all i = 1, 2, ... t+ 1. Then ...l. + ..1... + · · · + 1..H. = 1. 
a1 a2 at+l 

Thus, ...l. + ..1... + · · · + 1..H. can take all integer values in [1, (t+2
2
)]. 

a1 a2 at+l 



Solution 2. First we assert that any integer between 1 and ~k(k + 1) can 
be written as a sum of at most k distinct integers among 1, 2, ... , k. This 
can be proved by induction on k. If k = 1 or 2, then we can easily check 
that the statement is true. Let k 2:: 2. Consider any integer m between 
1 and ~(k + 1)(k + 2). If m < k(k + 1)/2, the result follows from the 
induction hypothesis. Assuming k(k + 1)/2 < m :::; (k + 1)(k + 2)/2. Then 
0 < m- (k + 1) :::; k(k + 1)/2, Using induction hypothesis, we may write 
m- (k + 1) as a sum of at most k distinct integers among 1, 2, ... , k. Thus 
m = m- (k + 1) + (k + 1) can be written as a sum at most k + 1 distinct 
integers among 1, 2, ... , k + 1. 

Alternatively, locate m in [k(k + 1)/2, (k + 1)(k + 2)/2). That is m = 
~(k + 1)(k + 2)- i, where 1 :::; i :::; k + 1. Then we may write m = 1 + 2 + 
· · · + i + · · · + k + (k + 1), where i means the term i is omitted. 

Now we prove that 

1 2 2002 
8=-+-+ .. ·+--

al a2 a2oo2 

can take all integer values in the interval [1, ~(2002)(2003)] = [1, 2005003]. 
Certainly 1 can be written in this form by taking each ai to be 2005003. Let 
m > 1 be any integer in [1, 2005003]. Write m- 1 as a sum of at most 2002 
distinct integers among 1, 2, ... , 2002. That is m- 1 = b1 + · · · + bk, where 
1 :::; bi :::; 2002 and all are distinct integers. Since m - 1 < ~ ( 2002) ( 2003), 
k < 2002. Take aj = 1 if j E {b1 , ... , bk}, and aj = ~(2002)(2003)- m + 1 
otherwise. Then .l. + ..1.... + ... + 2002 = m. 

a1 a2 a2002 

11. Prove the inequality 

for any positive numbers a1, ... , an, b1, ... , bn. 

Solution 

Thus 

LHS = L aibi + L aibj 
i#j 

RHS = L aibi + L ajbj(ai + bi) . 
i#i (ai + bi)(aj + bj) 

(a ·b · -a ·b·)2 
= "\" t J J t > 0. 
~(a·+ b·)(a· + b·) -i<j t t J J 

~~MJf)'~ 
It, 12 ~ 
< > 
~ f-. 

====----------------------------------------------~-- M E D L E Y 
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12. Two circles r1 and r2 are tangent to each other internally at a point N 
such that r2 is inside r 1 . Points C, SandT are on r 1 such that CS and CT 
are tangent to r 2 at M and K respectively. Let U and V be the midpoints 
of the arcs C S and CT respectively. Prove that U CVW is a parallelogram 
where W is the second point of intersection between the circumcircles of 
6UMC and 6VCK. 

Solution. First N, M, U are collinear. To see this, join MP and let the 
extension of N M meet r 1 at U'. Join U' C and U' S. Since N is a point of 
tangency for both circles, we have MP is parallel to U'C. Also, L.CMP = 
L.CNU'. Therefore, L.U'SC = L.CNU' = L.CMP = L.U'CS. Therefore, 
U' is the midpoint of the arc SC. That is U' = U. Similarly, N, K, V are 
collinear. 

Next we shall show that W lies on MK. Since M, U, C, W are concyclic, 
L.MWC = 180°- L.MUC. Similarly, L.KWC = 180° - L.KVC. Thus, 
L.MWC + L.KWC = 360°- (L.MUC + L.KVC) = 180°. Therefore, W lies 
onMK. 

Therefore, L.UWC = L.UMC = L.SMN. As SM is tangent to r 2 at 
M, we have L.SMN = L.NKM = L.NKW = L.WCV. Thus, L.UWC = 
L.W CV. This means that UW is parallel to V C. Similarly, U C is parallel 
toVW. 

13. In triangle ABC, let P and Q lie on the interior of BC such that 
L.BAP = L.CAQ. Let I be the incentre of ABC. Also, let J and K be the 
incentres of triangles BAP and CAQ respectively. Prove that AI, BK and 
CJ are concurrent. 



Solution 1. Let r be the radius of the incircle of LlAEC. Also, let rb denote 
the inradius of !lEAP and let rc denote the inradius of LlCAQ. (We can 
assume that the points E, P, Q and C lie along EC in that order; the case 
where the order of the points is E, Q, P and C instead is essentially similar.) 
Note that I and J both lie on the interior angle bisector of L.AEC, and that 
I and K both lie on the interior angle bisector of L.AC E. By dropping the 
perpendiculars from I, J and K onto EC, and a_pjlying similar triangles to 
the right-angle triangles produced, we find that BJ = ;b and //k = ;c. 

A 

Let the angle bisector of L.EAC (AI extended) meet the line JK at X. 
Since L.EAP = L.CAQ, we have L.EAJ = L.JAP = L.QAK = L.KAC. 
Also, since L.EAI = L.CAI, we have L.JAI = L.KAI. Hence, J/{ = 1k = 
rb/sinBAJ _ rb · L.EAJ _ L.KAC 
rc/sinKAC-rc'SlnCe - · 

Thus, in LliJK, we have 

IE JX KG_ r rb rc _ l 
EJ . XK . CI - rb . rc . -:;:-

Hence, by Ceva's Theorem, the lines AI, EK and CJ are concurrent. 

Solution 2. Instead of applying Ceva's theorem to 6I JK, we may apply it 
to 6IEC. So we need to show 

EU CK IJ_
1 UC. KI. JE- . 

By angle bisector theorem, EU/UC = AE/AC. 

Next, 

CK Area 6AKC AK · ACsinL.CAK ACsinL.CAK 
KI Area 6AIK AK · AisinL.KAI AisinL.KAI. 

~~MJt~t~ 
~ 12~ ~ 
~ r ~ 
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Similarly, 
IJ AisinLJAI 
BJ ABsinLBAJ. 

As LBAJ = LCAK and LJAI = LKAI, the result follows. 

14. Prove that for any n;:::: 2 distinct positive integers a 1 , a2, ... , an, 

is an integer. 

Solution. Let n, k, s, t be positive integers such that 

n = ks + t, 0::; t < s. 

Claim 1: The number of terms in (n-1)!(n-2)! · · ·1! which are multiples 
of s is given by 

Proof: The number of multiples in i! is li/ sj. Thus the total number of 
multiples is 

n-l l"J (k) 8 ~ = s ( 1 + 2 + ... + ( k - 1)) + kt = kt + s 2 . 

Let ai, 1 ::; i ::; n be a strictly increasing sequence of positive integers. 

Claim 2: The number of terms in IT ( ai - aj) which are multiples of s is 
at least kt + s (;). 

Proof: If r of the terms a 1 , ... , an are pairwise congruent mods, then, 
correspondingly, there are (;) terms in the product which are multiples of s. 
Since for any positive integers, a < c < d < b with a + b = c + d, we have 
(a)+ G) > (~) + (~). Thus the minimum is achieved when t of the congruence 
cfasses contain k + 1 elements each while the other s - t congruence classes 
contain k elements each. Thus the minimum is t(k~ 1 ) +(s-t)(;) = s(;) +tk. 

Thus for any prime p, the number of multiples of pa in the numerator is 
at least the number of its multiples in the denominator. 

[Ps: If a < b are positive integers, we have 



because 

15. A set of three nonnegative integers {x,y,z} with x < y < z is called 
historic if {z- y, y- x} = {1819, 1965}. Show that the set of all nonnegative 
integers can be written as the union of pairwise disjoint historic sets. 

Solution. Let a < b be the two historic numbers. That is in our case, 
a = 1819, b = 1965. 

The sets 
A= {0, a, a+ b}, B = {0, b, a+ b} 

are historic. Note that a set X is historic if and only if and only if it is 
either x + A or x + B. We'll construct the union as follows: 

(1) Take X 1 =A. 

(2) Suppose X1, ... Xm have been found, Xm+l is constructed as follows: 

Let k be the smallest integers not in the union U of X 1 , ... , Xm. If 
k +art. U, take Xm+l =A+ k . Otherwise, take Xm+l = B + k. 

This construction always works because the smallest element in each of 
X1, .. . , Xm is less than k, thus the largest is less than k +a+ b. That is 
k +a+ b tf. U. So if k +art. U then we can take Xm+l = k +A. 

If k +a E U and k +bE U, then k + b is the largest element is some Xj, 
j:::; m. Thus k + b = n +a+ b for some n < k. So k = n +a. Since k rt. U, 
Xj = {n, n + b, n +a+ b} . But when we chose Xj, we cannot taken+ bas 
the second element, since at that time n +a was still not used. This shows 
that if k +a E U, then k + b rt. U and we may take Xm+l = B + k. 

16. A setS of nonnegative real numbers is said to be good iffor any x, y E S, 
either x + y E S or lx- Yl1 

E S. For example, if r is a positive real number 
and n is a positive integer, the set S(n, r) = {0, r, 2r, . .. , nr} is good. Prove 
that any finite good set which is not the set {0} is either of the form S(n, r) 
or has exactly 4 elements. 

Solution. If m is the largest element in the set S, then m - m = 0 E S as 
m + m rt. S. Thus a good set contains 0. Certainly {0} and {0, a} are good 
sets. If S = {0, a, b} is a good set with 3 elements, then b- a E S. Hence, 
b- a= a orb= 2a. Thus S = 8(2, a). 

LetS= {O,a,b,c} be a good set with 0 < a < b < c. Then S = 
{ 0, c- b, c- a, c} with 0 < c- b < c- a < c. Thus, a = c- b. So a 4-element 
good set is of the form S = { 0, a, b, a + b}. Such a set is indeed good. 

~~M~I! 
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Let 0 < x1 < X2 < · · · < Xn, n;:::: 4, be the elements of a good setS with 
n + 1 elements. Then for any i = 1, ... , n, we have Xn- Xi E S. Thus 

0 < Xn - Xn-1 < Xn - Xn-2 < · · · < Xn - X2 < Xn - X1 < Xn 

are the elements of S. Thus we get Xn = Xn-i + Xi. Also ( Xn - x1) - Xi E S 
for i = 2, ... , n - 1. 

Thus 
0 < Xn - X1 - Xn-2 < Xn - X1 - Xn-3 < · · · 

< Xn - XI - X2 < Xn - X2 < Xn - X1 < Xn 

are the elements of S. 

Thus we have Xi+ I - Xi = X1 for i = 2, ... , n - 1. From x1 + Xn-1 = 
X2 + Xn-2, we also get Xn-1- Xn-2 = X2- XI· Thus X2- X1 = X1 as well. 
Thus Xi= ix1 and S = S(n, x1). 

17. Find all positive integers n such that 2n - 1 is a multiple of 3 and 
(2n- 1)/3 is a divisor of 4m2 + 1 for some integer m. 

Solution. We shall show that n is a power of 2. First, observe that 2n - 1 
is a multiple of 3 if and only if n is even. Let n = 2k. The result is obviously 
true if k = 1. So we consider k;:::: 2. Then 

Note that Fi = 22
i + 1, i = 2, ... , k -1 are pairwise relatively prime. To 

see this, consider any positive integers i, j, we have Fi+j - 2 = r Fi where r 
is some integer. If Fi and Fi+j has a common divisor d, d must be odd. Also 
d divides 2. Thus d = 1. 

Also, [22'-
1

]
2 = -1 (mod Fi)· By Chinese Remainder Theorem, there 

exists an integer m such that 2m = 22,_
1 

(mod Fi) for i = 2, ... , k- 1. 
Thus, (2m) 2 = -1 (mod Fi) for all i = 2, ... , k- 1. In other words, Fi = 

22' + 1 divides 4m2 + 1 for all i = 2, ... , k- 1. Therefore, (22
k - 1) /3 divides 

4m2 + 1. 

Now suppose n = 2hs, where sis an odd integer greater than 1. We have 
2n - 1 = (28 )2" - 1. Thus 28 + 1 divides 2n - 1. Since 3 divides 28 + 1 and 
28 +1 = 1 (mod 4), 28 +1 and consequently, 2n-1 has another prime divisor 
p- 3 (mod 4). If there exists m such that 4m2 + 1 = 0 (mod (2n -1)/3), 
then (2m)2 _ -1 (mod p). However, -1- (-1)(p-l)/2 ((2m) 2 )(p-l)/2 = 
(2m)P-l = 1 (mod p), a contradiction. Here the last congruence is by 
Fermat's Little Theorem and the first congruence is because p = 3 (mod 4). 


