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People in the field of calculus should be familiar with the result 

for all values of n except n = -1. Generally it is readily accepted. With a 

little advance into the subject, they soon see that J ~dx = lnx +C. That 

completes for the integration of xn. I myself had felt that the exceptional 
case for n = -1 is really very special, different and outstanding. Why is a 

n+1 
ln x + C among a host of _x __ + C, it is very alien! I suppose this feeling is 

n+1 
natural and common. So goes my exploration. 

n+1 
Examining the graphs of y = _x __ for different values of n, for instance, 

n+1 
n = 0, 1, 2, -0.5, -0.9, -0.99, clearly shows that the graph of y = ln xis very 

xn+1 
much apart from the graphs of y = -- for all n =J -1. The graph of 

n+1 
xn+1 

y = -- is not approaching to the graph of y = ln x when n tends to -1 
n+1 

as we might wish that it would. Let us watch the similarity of the graphs of 
X0.01 

y =--andy= lnx. See Figure 1 and 2. 
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Figure 2 Graph of y = ln x 
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d X0.01 d 
Their shapes are close! In fact, -(--) = x-0·99 whereas -d lnx = l = 

dx 0.01 X X 

x-1 . Indeed their gradients are close! The two curves are different mainly by 
X0.01 _ 1 

being far displaced from each other. Consider now the graphs of y = ---
0.01 

andy= lnx. 
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They are close. Let us adopt a special particular integral: 

I xn+l -1 
xndx = n + 1 +C. 

xn+1- 1 
Examine the graphs of y = now for different values of n as we do 

n+1 
xn+1 

for y = --. 
n+1 

Figure 5. 

x-0.99+1 _ 1 
In particular, consider the graph of y = . See 
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·'ttwww fer r 't -
xn+1- 1 ' 

We see that the graph of y = approaches that of y = ln x as n 
n+1 

n+l 1 
tends to -1. The underlying fact is: lim x - = ln x as the definition of 

n-+-1 n + 1 
ln x. Alternatively, 

xn+l- 1 
lim--­

n-+-1 n + 1 

xm -1 
lim---

m-+0 m 
e(Inx)m- 1 

lim----
m-+0 m 

1 1 
(lnx)m + -,[(lnx)m)2 + -,[(lnx)m]3 + · · · 

= lim 2· 3· 
m-+0 m 

= lnx. 

Conclusion As an alternate form of result, we might take 

so that j ~dx = ln x + C is just a result expected, coming to scene as n 

approaches -1, but yet, it cannot be obtained by putting n = -1 directly. 
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