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If we use the Mean Value Theorem here, then it is an immediate consequence of it. What
does that mean? Basically that means the Mean Value Theorem does all the work for us.
So how is the Mean Value Theorem proved? One proof involves the use of the Extreme
Value Theorem. How is that proved? It involves the use of the completeness property of
the real numbers. So we can ask the question: If we can define the notion of
differentiability for a function from a non complete ordered field such as the rational
numbers into itself, then does the Mean Value Theorem hold? We can obviously find
examples of function from the rational numbers to the rational numbers where the Mean
Value Theorem or Rolle’s Theorem does not hold. An easy example would be a cubic
polynomial function whose derived function is a quadratic with real non-rational roots,

for instance f(x)=x’—-6x+1. Is there a function from the rational numbers or an

appropriate subset of it to the rational numbers whose derived function is zero but f is
non-constant? An appropriate subset would be an intersection of a non-empty open
interval with the rational numbers. Think of the holes that the rational numbers have. An

easy example would be a function f defined by f(x) =1 for any rational number x > V2

and f(x)=2 for any rational number x < V2. fis not a constant function. Then the
function f:Q — Qis differentiable and f'(x) =0 for any rational number x. A more

sophisticated example will be provided by g :(—v/2, ¥2)nQ — Q where g(x)=1/2>"?
for xe (\/5/2"“, J2/2M) NQ, or xe (—\/5/2", -2/2"YAQ, nan integer >0 and

g(0) =0. Then g is differentiable and g'(x) =0 for all x in (—J2— . «/5 ) NQand g is not
a constant function.

Theorem 1. f'(x) = 0on(a,b)implies that f = constant on(a,b).

Now we prove the above using only the completeness property of the real
numbers. We assume b>a. The proof is by contradiction. Suppose that f is not

constant. Then there exist u, v in (a,b), u<v such that f(u)# f(v). This means
fO) =FW) _ -

V—u

f(v)= f(u) #0. Then we shall make use of the difference quotient

to deduce a contradiction. Suppose now that C > 0.

For now let us suppose that (not assuming anything on C, i.e. C can be any real
number.)

fW) = fu)=C-u). *)




We are going to bisect the interval [u,v], pick the next interval from this bisection and
continue bisecting in like manner.
1

Take the mid point w = = of [u,v]. Then either

fFOW-fw)2Cly-w) M
or fw)= f(u) 2 C(w—u). (2
This is because if both (1) and (2) do not hold, then we would have
fW-fw)<C-w) and fiw)- flu)<Cw-u),
which would imply that f(v)— f(u)<C(v —u) contradicting (*).

If (1) holds, then we name u, =w and v,=v. If (1) does not hold we name
u,=uand v, =w.

Let k=(v—u). Then |v, —u,|=k/2 and
FO) = fu)2Cl, —uw). (*1)

Obviously,[u,,v,]C[u, v], uS u, <v,<v, |y, —u|S lv—u|/2 =k/2and

|v—v,|<|v-u|/2 =k/2. We next take the mid point w, =% of [u,, v,]. Then we
shall have either
FO)=fw)2C, -w) 3)
or Jw) = fu)2C(w, —u,). (4)
Again this is because if both (3) and (4) do not hold then we would have
f(Vl)—f(W|)<C(V| —Wl) and f(wl)—f(u,)<C(wl _ul) lmplylng f(vl)_f(u|)<

C(v, —u,) thus contradicting (*1).

If (3) holds, then we name u,=w, and v, =v,. If (3) does not hold we name

L o A S L 2
u,=u, and v, =w,. Then |v2 u2|—k/2 -

f(vz) i f(uz) 2 C(Vz = uz)- (*2)




Obviously, [u,,v,1C[u,,v,], u, Su,<v,<v,, |u,—u |<|v, —u,|/2=k/2* and
[vi=v, |S| v, —u, | 12=k/2%.

In this way we obtained a nested sequence

PR | TR | oA C lu, vl < [y, v ] Sl vi

with the length of the interval [u,,,v,,],vz;nu approaches 0 as n tends to infinity; an

increasing sequence (not necessarily strictly increasing)

1 Sy Sy 5. 050088, STk

satisfying, forall n, u, <v, <v,
|un _un—-l |Sk/2" (5)

and a decreasing sequence (not necessarily strictly decreasing)

W BV 2V i cicn @ Ve 2 s

n

satisfying, foralln, u<u, <v,,
v, —v,  |Kk/2" (6)
and

f) = fw,)2C, —u,). (*n)

Now we have a choice to proceed. We can use the Weierstrass characterization of
completeness to conclude that the nested sequence{[u,,v,]}, must have a unique

intersection i.e, there is exactly one point x that belongs to [u,,v,] for all n. (See [2].

For a list of equivalence of the completeness property see [1]. For a less demanding
reference see [3].) We can also note that the sequence or set{u, } is bounded above by v

by (5). Therefore, by the completeness property of the real numbers, {x,} has a least
upper bounded or supremum in R also denoted by x, i.e.x=sup{u,}. Also by the
completeness property of the real numbers since the sequence {v,} is bound below by u
by (6) it has a greatest lower bound or infimum in R denoted by y, that is, y=inf {v,}.




We claim that x = y. From (5) any v, is an upper bound for {u,6}. Hence
x=sup{u,}<v, for each n. Therefore, x is a lower bound for{v,}and so
x < y=inf{v,}. Can x be bigger than y? Suppose x > y. Then since x=sup{u, }, there
exists a u;such that y <u;. But since y=inf{v,}and u; <v, for all n, u; < y=inf{v,}.
This contradicts y <u;. Hence x = y. In particular, we have u, < x<v, for all n. That

is the same as saying x€ [u,,v,] for all n.

Next we shall show that f'(x)>C. That is limMZC. If on the

yox y—x
contrary limM< s
y—x y—x
0<|y-x|<d we have

then there exists a >0 such that for all y with

f(y)—f(x)<c.
y=X

(A4)

If we can show that for any § >0, we can find a x;such that 0<|x;—-x|<J but
f(xs)— f(x)
that f'(x) = C. We shall now proceed to do just that.

> C. Then no 6 >0 can exist so that (A) holds and so we can conclude

For any 6>0, x—Jd <x=sup{u,}and so there exists integer N such that
x—0 <uy < x. Likewise using the fact that x = inf{v, }, there exists an integer M such
that x<v,, <x+J. Let K = max(N,M). Then we have

X~0<U SUESX2V, SV, <X+0
and LAt .

This means that both u, and v, lie in the interval (x—3J, x+3J). If x=u,, then
let x; =v,. If x=v,, thenlet x; =u,. Ineither case using (*,), we have

fG) = £ _ fO)=F ) 5

Xy =% Ve~ Hy

If u, <x<v,,then as in the beginning of the proof one of the following must be true:
F)-f(x)2C(vy —x) : (7

(®)

FAx= f (e ) 2C(x—it )
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This is because if both (7) and (8) do not hold, we would then get
f(vg) - f(X)<C(vy —x)

and f(x)—f(ug)<C(x—u,) implying that f(vy)—f(uy,)<C(vy —u,) contradicting
(*K). If (7) holds, then we let x; =v, and if (8) holds we let x; =u,. We then have

fe9) = 5

€))

Hence we conclude that if C > 0this would give us f’(x)>C >0 thus contradicting
f'(x)=0. Thus C<0.

Suppose C < 0. We can either apply the above argument with the inequality “>”
replaced by “<” throughout or we can consider using the function g =—f. We can
rewrite (*) as

- fW)=(-fW)=-C(v—u).
That is

g)=g)=(=C)(v-u). Pt

Now —C>0and so (**) is similar to (*) and so we can conclude that we can find
an x in [u,v]C(a,b)such that g'(x)=—f'(x)2-C,that is f'(x)<C<0 thus
contradicting f’(x)=0. Therefore, C = 0 and so f must be a constant function.

Note that we have actually proved the following result:

Theorem 2. If f:[a,b]— Ris differentiable, then for any «, v in [a, b] with u < v there

PAVRIION

V—Uu

exists a point x in [u, v] such that f'(x) >

Reversing the inequality “>” by “<” throughout, starting with (1) and (2) we
would obtain the following:

Theorem 2’. If f:[a,b]—>R is differentiable, for any u, v in [a,b] with u < v there

PAORFION

V—Uu

exists a point x in [u, v] such that f'(x) <




Theorem 3. If f'(x) <0 on (a, b), then fis decreasing on (a, b).

Proof. Take any u, v in (g, b) with u < v, then by Theorem 2, there exists a point x in the

fO) - fw)
v—u

interval [u, v] such that <f’(x)<0. Hence f(v)-f(u)<0 and so

f(v)< f(u). That means fis decreasing on (a, b).

Theorem 4 (Weak Mean Value Theorem). If m < f'(x)< M on [a, b], then for any u, v
in [a, b] with u < v,
m(v—u)< f(v)— f(w)SM (v —u).

Proof. By Theorem 2, f(v)-f(u)<f(y)(v—u) for some y in [u, v] and so
fW)=f(w)<M(v-u). By Theorem 2’, there is a point y in [w, v] such that
fW=f@)zf'(y)(v—u) 2m(v—u). Therefore, m(v—u)< f(v)—fw)<M (v —u).
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