
'ln this issue we publish the problems of the Canadian 

Mathematical Olympiad 1993 and the Singapore lMO National 

Team Selection Test 2002. 

Please send your solutions of these Olympaids to me at the address 

given. All correct solutions will be acknowledged. We also present 
solutions of the Mathematical Competitions in Croatia 2000, 

Bulgarian Mathematical Olympaid 1994, and the 42"d International 

Mathematical Olympiad. 



Canadian Mathematical Olympiad 1993 

1. Determine a tri~ngle whose three sides and an altitude are four consecu­
tive integers and for which this altitude partitions the triangle into two right 
triangles with integer sides. Show that there is only one such triangle. 

2. Show that the number x is rational if and only if three distinct terms 
that form a geometric progression can be chosen from the sequence 

X, X+ 1, X+ 2, X+ 3, · · · . 

3. In triangle ABC, the medians to the sides AB and AC are perpendicular. 
Prove that cot B + cot C ~ ~. 

4. A number of schools took part in a tennis tournament. No two players 
from the same school played against each other. Every two players from 
different schools played exactly one match against each other. A match 
between two boys or between two girls was called a single and that between 
a boy and a girl was called a mixed single. The total number boys differed 
from the total number of girls by at most 1. The total number of singles 
differed from the total number of mixed singles by at most 1. At most how 
many schools were represented by an odd number of players? 

5. Let Y1, .y2, y3, ... be a sequence such that y1 = 1 and, fork> 0, is defined 
by the relationship: 

if k is even 
if k is odd 

if k is odd 
if k is even. 

Show that the sequence y1 , y2 , y3 , . . . takes on every positive integer value 
exactly once. 

~ . 



Singapore IMO National Team Selection Tests 2002 

Note: Problems 1 to 6 were used to select the national team trainees. The 
last 11 problems were used to select the final team of 6 to represent Singapore 
at the International Mathematical Olympiad to be held at Glasgow, United 
Kingdom in July 2002. 

1. Let A, B, C, D, E be five distinct points on a circle r in the clockwise 
order and let the extensions of CD and AE meet at a point Y outside r. 
Suppose X is a point on the extension of AC such that X B is tangent to r 
at B. Prove that XY = XB if and only if XY is parallel DE. 

2. Let n be a positive integer and (x1 , x2 , ... , x 2n), Xi= ±1, i = 1, 2, ... , 2n 
be a sequence of 2n integers. Let Sn be the sum 

If On is the number of sequences such that Sn is odd and En is the number 
of sequences such that Sn is even, prove that 

3. For every positive integer n, show that there is a positive integer k such 
that 

2k2 + 2001k + 3 = 0 (mod 2n). 

4. Let X1, x 2 , x 3 be positive real numbers. Prove that 

(x2 + x2 + x2)3 
1 2 3 < 3. 

(x~ + x~ + x~)2 -

5. For each real number x, L x J is the greatest integer less than or equal 
to x. For example L2.8J = 2. Let r 2: 0 be a real number such that for all 
integers m, n, min implies L mr J I L nr J. Prove that r is an integer. 

6. Find all functions f: [0, oo)---+ [0, oo) such that J(f(x)) + f(x) = 12x, 
for all x 2: 0. 

7. Let P a point on the extension of the diagonal AC of rectan~e ABC D 
beyond C, such that L..BPD = L..CBP. Determine the value of ~c· 

8. Let a 11 a2 ••• , an be positive real numbers and let A= 2:: ai. Prove that 

""" ai > _n __ 
~ 2A - ai - 2n - 1 · 

9. Suppose the sum of m pairwise distinct positive even numbers and n 
pairwise distinct positive odd numbers is 2002. What is the maximum value 
of 3m+4n? 



10. Determine the number of positive integers that can be expressed in the 
form 

1 2 2002 
-+-+···+--, 
a1 a2 a2oo2 

where a1, az ... , azooz are positive integers. 

11. Prove the inequality 

for any positive numbers all ... , an, b1, ... , bn. 

12. Two circles r 1 and r 2 are tangent to each other internally at a point N 
such that r 2 is inside r 1 . Points C, S and T are on r 1 such that C S and CT 
are tangent to r 2 at M and K respectively. Let U and V be the midpoints 
of the arcs C S and CT respectively. Prove that U CVW is a parallelogram 
where W is the second point of intersection between the circumcircles of 
6UMC and 6VCK. 

13. In triangle ABC, let P and Q lie on the interior of BC such that 
LEAP= LCAQ. Let I be the incentre of ABC. Also, let J and K be the 
incentres of triangles RAP and CAQ respectively. Prove that AI, BK and 
CJ are concurrent. 

14. Prove that for any n ~ 2 distinct positive integers a 1 , a2 , ... , an, 

is an integer. 

15. A set of three nonnegative integers { x, y, z} with x < y < z is called 
historic if {z- y, y- x} = {1819, 1965}. Show that the set of all nonnegative 
integers can be written as the union of pairwise disjoint historic sets. 

16. A set S of nonnegative real numbers is said to be good if for any x, y E S, 
either x + y E S or lx- Yl E S. For example, if r is a positive real number 
and n is a positive integer, the set S(n, r) = {0, r, 2r, ... , nr} is good. Prove 
that any finite good set which is not the set {0} is either of the form S(n, r) 
or has exactly 4 elements. 

17. Find all positive integers n such that 2n - 1 is a multiple of 3 and 
(2n- 1)/3 is a divisor of 4m2 + 1 for some integer m. 



Mathematical Competitions in Croatia 2000 

Selected problems 

1. Find all positive integer solutions of the equation 

1 2 3 
-+---=1. 
X y Z 

Solution Calvin Lin Ziwei (Hwachong Junior College). 

Note that 1. + £ = 1 + 1 > 1. When x = 1, we get 2z = 3y and so 
X y Z 

(x, y, z) = (1, 2k, 3k) is a solution fork EN. 

When x ~ 2, we have ~ + ~ ~ ~ + ~ > 1 and whence, y < 4. By 
considering the cases y = 1, 3, 2, we get (x, y, z) = (2, 1, 2), (2, 3, 18), (k, 2,-3k), 
k E N as solutions. 

2. The incircle of !::::.ABC touches its sides BC, CA, and AB in the points 
A1, B1 and 0 1 , respectively. Determine the angles of l::::.A1B 1 0 1 in terms of 
angles of !::::.ABC. 

Wee Hoe Teck {Singapore) and Colin Tan Weiyu {Raffles Junior College) 
both have similar solutions. 

Note that LAC1B 1 = LC1B 1A = goo - A/2, since ~AB1 0 1 is isosce­
les. Therefore, the angles of ~A1B1 0 1 are goo - A/2, goo - B /2, goo - C /2 
respectively. 

3. Let ABCD be a square with side length 20. Let Ti, i = 1, 2, ... , 2000, be 
points in its interior so that no three points from the set S = {A, B, C, D} U 
{Ti : i = 1, 2, ... , 2000} are collinear. Prove that at least one triangle with 
vertices in S has area less than 1

1
0 • 

The following was submitted jointly by Wee Hoe Teck and Thevandran Senko­
dan {Singapore). 

Lemma: Given any set S of n ~ 3 points on the plane, no 3 collinear, 
there exists a triangulation of the convex hull of S. 

Proof of Lemma: The proof is by induction. The case n = 3 is trivial. 
Assume the result holds for up to n points. Consider S comprising n + 1 
points. If all n + 1 points lie on the boundary of the convex hull, then fixing 
any one point and joining the edges between that point and every other 



point on the convex hull yields a triangulation. If the convex hull contains 
::::; n points, pick some point in the interior of the convex hull and join it to 
each point on the convex hull. Apply the induction hypothesis to triangulate 
each triangle that's formed. The result follows. 

Main Solution: Consider a triangulation of the square ABCD by the 
points 7i, i = 1, 2, ... , 2000. Applying Euler's Formula V- E + F = 1, 
where V = 2004 and 3F = 2E- 4 by a counting argument (in 3F, every 
interior edge is counted exactly twice, the 4 edges of ABCD are counted 
exactly once each), we have F = 4002. Therefore, by Pigeonhole Principle, 
there exists some triangle whose area is at most 20 x 20/4002 < 1/10. 

4. The circle with centre on the base BC of an isosceles triangle ABC is 
tangent to equal sides AB, and AC. Let P and Q be points on the sides AB 
and AC, respectively. Prove that 

PB· CQ = BC2 
4 

if and only if PQ is tangent to this circle. 

A 

Solutions were received from Calvin Lin Ziwei (Hwachong Junior College), 
whose solution is presented below, and David Pargeter (England). 

It's easy to see that the centre 0 of the circle is at the midpoint of the 
side BC. If PQ is tangent to the circle at T, then L.OPQ = L.OPB =a, 
L.OQP = L.OQC = /3. Thus LABC =LACE= ~(360° -2a-2j3) = 180°­
a- /3. Thus L.POB = /3 and LQOC =a. Therefore 6.PBO = 6.0CQ. 
Thus PB/BO = COjCQ or PB · CQ = BC2j4. 

Now suppose P B · QC = -l BC2, let the tangent from P to the circle 
meet AC at R. Then by the above demonstration, PB · RC = iBC2 and 
this implies that Rand Q coincide, so PQ is a tangent. 

5. Let n(~ 3) positive integers be written on a circle so that each of them 
divides the sum of its neighbours. Denote 



Determine the maximum and minimum of 8n. 

Wee Hoe Teck (Singapore} contributed the following solution. Colin Tan 
Weiyu (Raffles Junior College) also found the minimum with a similar argu­
ment. 

For any positive numbers x, y, we have~+~~ 2 by AM-GM inequality. 
Thus, 

writing an+1 = a1. Also, for a1 = a2 = ... = an = 1, we have 8n = 2n. 
Therefore, the minimum of 8n is 2n. 

Next, we shall prove by induction that the maximum of 8n is 3n- 1. 
For n = 3, assume without loss of generality that a1 ~ a2 ~ a3 . Therefore, 
a3 I (a1 + a2) ~ 2a3 implies either a1 + a2 = 2a3 or a1 + a2 = a3. In the first 
case, we must have a1 = a2 = a3 , which yields 83 = 6. In the second case, 
a2 I (a1 + a3) = 2a1 + a2, so a1 ~ a2 I 2ab which yields either a2 = a1 and 
thus 83 = 7, or a2 = 2ab a3 = 3a1 and thus 83 = 8. Hence, the maximum of 
83 is 8, which holds for instance when a1 = 1, a2 = 3, a3 = 3. 

Now suppose the maximum of 8n is 3n- 1, and consider any n + 1 
numbers a1, ... , an+1 in a circle such that each of them divides the sum of its 
neighbours. Without loss of generality, assume an+1 = max{a1, ... ,an+1}. 
Again, we have an+1 I a1 +an~ 2an+b which implies either a1 +an= 2an+1 
or a1 +an = an+1· In the first case, we must have a1 = an = an+1· In 
addition, a1 I an+1 + a2 and a1 < an+l + a2 ~ 2a1. Therefore, a2 = a1. By 
an inductive argument, we have a1 = a2 = · · · = an+1 and thus 8n = 2n in 
this case. 

In the second case, that is, a1 +an = an+1' we have a1 I (a2 + an+1) = 
a1 + a2 +an, and thus a1 I (a1 +an)· Similarly, an I (an-1 + an+1) yields 
an I (an-1 + a1). Therefore, the numbers a1, ... , an if written a circle satisfy 
the property that each of them divides the sum of its neighbors. It follows 
from our induction hypothesis that 8n ~ 3n - 1. FUrthermore, substituting 
a1 +an= an+1 into our expression for 8n+1 yields 8n+1 = 3+8n ~ 3(n+1)-1. 
To see that this maximum can be achieved, take any a1, ... , an that yields 
8n = 3n- 1, and add an+l = a1 +an. It is straight-forward to check that 
we still have the property that each of the n + 1 numbers divides the sum of 
its neighbors, and that 8n+l = 3( n + 1) - 1. 

We could therefore conclude that the maximum and minimum of 8n are 
2n and 3n - 1 respectively. 

6.. Let 8 = { k E N : a E N, a2 I k ==? a = 1}. For any n E N, prove that 

I:lv'n/kJ = n. 
kES 

Note: For any real number x, l x J is the greatest integer less than or equal to 
X. 



First we present the solution by Calvin Lin Ziwei (Hwachong Junior College) 

Form a table whose columns are indexed by members of S = { s1, s2, ... } 

and whose rows are indexed by the squares {12 , 22 , 32 , ... }. The entry in 
( si, p) is sd2 . The following shows the initial parts of the table: 

6 
6 

24 
54 

7 
7 
28 

10 
40 10) 

Since any number can be uniquely written as s2 t, where t is square free, we 
see that the entries in the table are pairwise distinct. Clearly, there are n 
entries in the table that are less than or equal to n. 

Consider the column indexed by k. If there are j numbers in the column 
less than or equal ton, then l .JI J = j. This is true since kj2 :::; n < k(j + 1 )2 . 

Let k run through all the values in setS, we see that EkES l .JIJ = n. 

Wee Hoe Teck (Singapore) and Colin Tan Weiyu (Raffles Junior College) 
solved it in another way. We present a sketch below. 

First observe that for any n E N and k E S, k :::; n, 

with the second equality holding if and only if n + 1 = a2 k for some a E Z, 
a > 1. The proof is straightforward. 

The main result is then obtained by induction. Assume that the result 
holds for n. We only need to note two cases to complete the proof: n + 1 E S 
and n+ 1¢ S. 

Bulgarian Mathematical Olympiad, 1994 

Selected problems from competitions of various levels. 

1. Thirty-three natural numbers are given. The prime divisors of each of 
the numbers are among 2, 3, 5, 7, 11. Prove that the product of two of the 
numbers is a perfect square. 

We present similar solutions by Ernest Chong Kai Fong and Tan Kiat Chuan 
(both from Raffles Junior College.) 

Let n = 2k1 3k2 5k3 7k4 1lk5 be a natural number, ki is a non-negative 
integer for i = 1, 2, ... , 5. Let f(n) = (all a2, a3, a4, as), where ai = 0 if ki is 
even, ai = 1 if ki is odd. Note that there are 25 = 32 distinct possibilities 
for f(n). Thus by pigeonhole-principle, there exist 2 natural numbers in 



the 33 natural numbers given, say p and q, such that f(p) = f(q). Thus 
f(p + q) = (0, 0, 0, 0, 0), i.e., p + q is a perfect square. 

2. Let 
f(x) = x 4

- 4x3 + (3 + m)x2
- 12x + 12 

where m is a real number. 

(a) Find all integers m such that the equation f ( x) - f ( 1- x) + 4x3 = 0 
has at least one integer solution. 

(b) Find all values of m such that f(x) 2: 0 for all real number x. 

We present similar solutions by Tan Kiat Chuan (Raffles Junior College)and 
Calvin Lin Ziwei (Hwachong Junior College). 

(a) From f(x)- f(1-x)+4x 3 = 0 we get 6x2 +(2m-26)x+(12-m) = 0. 
Thus 

13 - m ± v m2 - 20m + 97 
X= 

6 

whence m2 - 20m + 97 must be perfect square. But if m2 - 20m + 97 = 
(m- 10)2- 3 = k2 for some integer k, then k = 1 and lm- 101 = 2, i.e., 
m = 8, 12. When m = 8, x = 1 is an integer solution and when m = 12, 
x = 0 is an integer solution. Thus m = 8, 12. 

(b) We have 

f(x) = (x2 + 3)(x- 2? + (m- 4)x2
. 

f(x) 2: 0 for all x if m 2: 4. If m < 2, then f(2) = 16(m- 4) < 0. Therefore 
the answer is m 2: 4. 

3. Let No be the set of nonnegative integers and f(n) is a function f: N0 -t 
No such that f(f(n)) + f(n) = 2n + 3 for every n E N0 . Evaluate !(1993). 

We present a solution by induction. It's combined from similar solutions by 
Wee Hoe Teck (Singapore), Colin Tan Weiyu {Raffles Junior College) and 
Joel Tay Wei En {Anglo-Chinese School {Independent)). Tan Kiat Chuan 
{Raffles Junior College) solved the problem by converting it into a recurrence 
relation. 

By putting n = 0 , we get 

f(O) + P(o) = 3. 

Thus 
(f(O),j2 (0) E {(0,3),(3,0),(1,2),(2,1)}. 

Clearly f(O) f. 0. By putting n = 3, we find that (3, 0) is impossible. if 
(!(0), P~O)) = (2, 1), then f(2) = 1 and f(1) = 6. Then f(1) + j2(1) = 5 
implies f (1) = -1 which is impossible. Thus f(O) = 1. By putting n = 0, we 
get !(1) = 2. Now assume f(n-1) = n, f(n) = n+1 where n EN. Replacing 
n by n -1 in the given equation, we get f(n + 1) = n + 2. Thus it follows by 
induction that f(n) = n + 1 for n 2: 0. Obviously then !(1993) = 1994. 



4. A convex quadrilateral ABCD is inscribed in a circle with centre 0 and 
diameter 25. P and Q are points on AD and CD, respectively, such that 
0 P _l AD and OQ _l CD. Find the lengths of the sides of ABC D if the 
lengths of AB, BC, CD, DA, OP, OQ are distinct natural numbers. 

We present the solution by Tan Kiat Chuan (Raffles Junior College). Wee 
Hoe Teck (Singapore) also obtained the answer. 

Without loss of generality, we may let AB ~ BC and AD ~ CD. By 
Pythagoras' Theorem, we have 

CD2 + (20Q)2 = 252
. 

But x2 +(2y)2 = 252 has only two solutions: (x, y) = (7, 12), (15, 10). Thus we 
have AD= 7, OP = 12, CD= 15, OQ = 10. Let LODA =a, LODC = /3, 
LABC = 0 AB = x and BC = y. Then sinO= sin(a + /3) = sinacos/3 + 
cos a+sin/3 = 4/5. Thus cosO= 3/5 and cos LADC = cos(180° -0) = -3/5. 
Apply the cosine rule to !::,ABC and l::,ADC, we get 

x 2 + y2
- 2xycos0 = AC2 = AD2 + CD2

- 2(AD)(CD) cosLADC 

and consequently 
5x2

- 6xy + 5y2 = 2000. 

3y+v2s2-y2 2 2 
Thus x = 5 . Since 25 -y is a perfect square when y = 7, 15, 24, 25. 
there are only two solutions: (x, y) = (15, 25), (20, 24). The first is rejected. 
Thus the answer is AB = 20, BC = 24. 

5. A point D lies on the side AB of !::,ABC. The excircle k1 of l::,ACD, 
which touches the side CD externally, touches the sides AC and AD at points 
P and L, respectively. The excircle k2 of !::,BCD, which touches the side CD 
externally, touches the sides BC and BD at points Q and K, respectively. 
The incircle k3 of 6AC D touches the sides AC and AD at the points M and 
E, respectively and the incircle k4 of !::,BCD touches the sides BC and BD 
at the points N and F, respectively. 

(a) Prove that FK = EL = MP = NQ. 

(b) If :LAC B = 90° determine the position of the point D so that the 
area of the convex quadrilateral M N PQ is minimal. 



Tan Kiat Chuan (Raffles Junior College) and Calvin Lin Ziwei (Hwachong 
Junior College) submitted similar solutions. 

(a) Let BC =a, AC = b, CD= m, AD= y and DB= x. By the 
properties of excircles and incircles, we have 

2BQ = 2BK = a+ x + m 

2AP = 2AL = b + y + m 

2BN = 2BF = a+ x- m 

2AM = 2AE = b + y - m 

From here it is easy to obtain FK = AL = MP = NQ = m. 

(b) If LACE= goo 

Area MNPQ = ~[(MC)(NQ) + (CP)(NQ)] = ~(NQ)[MC + CP] 

= ~(NQ)(MP) = ~
2 

Thus the area is minimal when m is minimal, i.e., when D is the foot of the 
altitude from C onto AB. 

6. Let n > 1 be a natural number and 

An= {x EN: gcd(x,n) =:/= 1}. 

The number n is called interesting if for any x, y E An, we have x + y E An. 
Find all interesting n. 

Similar solutions were received from Meng Dazhe, Tan Kiat Chuan (both 
from Raffles Junior College), Calvin Lin Ziwei (Hwachong Junior College) 
and Wee Hoe Teck {Singapore). Ernest Chong Kai Fong (Raffles Junior 
College) also has a solution along similar lines . . We present Meng's solution. 

The answer is: all interesting ns are powers of primes. When n is a 
power of prime, say pi, any number not coprime to it must be a multiple of p 
also, say x = px', y = py'. Then x + y = p( x' + y'), also a multiple of prime 
thus not coprime to n. 

Suppose there exist an interesting n which is not a power of prime. Then 
n has two distinct prime divisors p and q. Let n = pi1 p~2 ... p~k be the prime 
power factorization of n where k 2:: 2. Now let x = Pb y = (p2)(p3) ... (Pk), 
then both of them share some common factors with n but x + y cannot share 
any prime factors with n. Firstly p1 does not divide x + y since it does not 
divide y the other primes factors of n, i.e., p2 ,p3 , •.. ,pk, also cannot divide 
x + y since all of them does not divide x hence a contradiction. 

7. There is more than one bus routes in a town. Every two bus routes 
have only one common station and every two stations are connected by a bus 
route. 



(a) Find the number of bus routes if every route has just 3 stations. 

(b) Find the number of stations on every bus route if the number of 
routes is 13 and every route has at least 3 stations. 

(c) If every station is a vertex of a regular polygon, prove that in case 
(a) each route can be represented by scalene triangle and that in 
case (b) each bus route can be represented by a polygon such that 
the lengths of the segments whose end points are vertices of the 
polygon (representing the bus route) are all different. 

No solution was received for this problem. The following solution is due to 
the editor. 

Form an incidence matrix of stations 8 1, ... , Sn against bus routes 
R1, ... , Rm where the (i,j)-entry is 1 if Station Si is on Route Ri and is 
0 otherwise. For any two rows of this matrix, a pair of 1 's that occur in the 
same column is called a column pair (with respect to these two rows). A row 
pair is defined analogously. In this matrix, there is at least 1 column pair 
with respective to any pair of rows and exactly one row pair with respect to 
any pair of columns. The row pair condition implies that there is at most 
one column pair with respect to any pair of rows. Thus there is also exactly 
one column pair with respect to any pair of rows. 

R1 R2 Ra1 Ra2 

s1 1 1 1 0 0 0 0 

82 1 0 0 1 1 0 0 

Sa 1 0 0 0 0 1 1 

si 0 x1 I I x2 II X a 

Suppose column 1 has k 1 's. Assume that these occur at the first k 
entries of R1. By the row pair (or column pair condition) condition, in the 
submatrix formed by the first k rows, then each column other than the first 
has exactly one 1 and each row has at least two 1 's. Let the 1 's, other than 
those in the first column, occur at the following cells: 

(1, 2), ... , (1, a1), 

(2, a1 + 1), ... , (2, a2), 

(k,ak-1 +1), ... ,(k,n) 

Now consider row i, i > k. There is exactly one 1 in each of the sets of cells 
x1 = {(i,2), ... ,(i,a1)}, x2 = {(i,a1 +1), ... ,(i,a2)}, ···, xk = {(i,ak-1 + 
1), ... , (i, n)}. Thus there are exactly k 1's in row i. By repeating the 



argument for other columns, we see that each of the first k rows ·also has 
exactly k 1's. By symmetry, we see that each column also has exactly k 1's. 
Thus m = n = k(k -1) + 1. 

(a) This is the case k = 3. We get m = n = 7. 

(b) This is the case n = 13. We get k = 4. 

(c) Label the vertices in the clockwise order a 1, a2 , ••. , an. In case (a), 
represent one of the routes by L::.a1a2a4 . The rest can then be obtained by 
rotating this triangle by 360°/7 about the centre. In case (b), rotate the 
quadrilateral a1a2a5a7 

8. Find all functions f : JR--+ JR such that 

xf(x)- yf(y) = (x- y)f(x + y) for any x, y E JR. 

Solution by Meng Dazhe (Raffles Junior College). 

The answer is all functions in the form f(x) = ax+ b. Let g(x) = 
f(x)- f(O). Then g(O) = 0. Now let h(x) = g(x) - xg(1). Thus h(1) = 0 
and h(O) = 0. Also 

xh(x)- yh(y) = (x- y)h(x + y) (1) 

We now show that h(x) = 0 for all x E JR. Firstly, substituting y as -x in 
(1) 

xh(x) + xh( -x) = 2xh(O) = 0. 

Hence for x =/= 0, h(x) = -h( -x). Thus h( -1) = 0. Now suppose there is 
any number u such that h(u) =/= 0. Then u =1- -1,0, 1. Substitute x = u and 
y = 1 into (1), we get 

uh(u) = (u- 1)h(u + 1) (2) 

Hence h(u + 1) =1- 0. Substitute x = u + 1 andy= -1 into (1), we get 

(u + 1)h(u + 1) = (u + 2)h(u). 

Thus u+ 2 =1- 0 for otherwise h(u+ 1) = 0. Hence uj(u -1) = (u+ 2)/(u+ 1) 
or 1 + 1/(u -1) = 1 + 1/(u + 1) which have no solutions. Hence such u does 
not exist. Thus h(x) = 0 for all x. Substituting back, we get: 

f(x) = g(x) + /(0) = h(x) + xg(1) + f(O) 

= x[/(1) + /(0)] + f(O) 

where f(O) and /(1) can take any real value. Hence f(x) =ax+ b, which is 
verified to work. 



9. Let I be the centre of the incircle of the nonisosceles triangle ABC. The 
incircle touches the sides BC, CA, AB at the points All Bll Cll respectively. 
Prove that the centres of the circumcircles of .6AIAll .6BIBll .6CIC1 are 
collinear. 

We present the solution by David Pargeter (England). Tan Kiat Chuan (Raf­
fles Junior College) also has a similar solution. 

If the bisector of the exterior angle at P on .6PQR meets QR produced 
at U, then QU/RU = PQ/PR. This is a well-known fact and can be proved 
by using the sine rule. 

Consider the figure of the problem, let P, Q, R be the mid-points of 
AI, BI, CI, respectively and define U as above. It is then easy to see that 
(1) PU is the perpendicular bisector of AI, (2) QR is the perpendicular 
bisector of IA1 . Then U is the circumcentre of .6AIA1 . Let V, W be the 
circumcentres of .6BIB1 , CIC1 , respectively (for simplicity, not shown in 
the figure), arrived in the same way. Then 

QU RV PW PQRPQR 
RUPVQW= PRRQQP=l, 

whence the collinearity of U, V, W follows by the converse of Menelause the­
orem to .6PQR. 
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1. Let ABC be an acute-angled triangle with circumcentre 0. Let P on 
BC be the foot of the altitude from A. 

Suppose that LBC A ~ LABC + 30°. 

Prove .that LCAB + LCOP < 90°. 



A 

Essentially, the trick is to convert this to a trigonometry inequality. There 
are many ways to do it, we present the simplest one. Most of the other 
solutions involve proofing P B 2:: 3PC from the desired result follows readily. 

Solution: Let R be the circumradius. Then 

CP = ACcosC = 2RsinBcosC 

= R(sin(B +C)- sin(C- B)):::; R(1- sin(C- B)) 

:::; R(1- sin30°) = R/2. 

So, OP > OC- PC 2:: PC, and whence LPCO > LPOC. The desired 
result then follows from the fact that LPCO + LC AB = 90°. 

2. Prove that 

a b c 
--;::::;;o:::::=:::;:::= + + > 1 J a2 + 8bc ..,Jb2 + 8ca J c2 + 8ab -

for all positive real numbers a, b and c. 

First solution. Note that f(x) = Tx is convex for positive x. Recall 
weighted Jensen's inequality:-

af(x) + bf(y) + cf(z) 2:: (a+ b + c)f(ax +by+ cz). 

Apply this to get 

LHS 2:: 
(a+b+c)3 

1 --::-----':-::-----:::---'-:----:-- > . 
a3 + b3 + c3 + 24abc -

The last step follows because by the AM-GM inequality, we have 

Second solution. By Cauchy -Schwarz inequality we have 

LHS x ( aJ a2 + 8bc + bVb2 + 8ac + cVc2 + 8ab) 2:: (a+ b + c)2 



and 

(a J a2 + 8bc + bV b2 + Sac + cJ c2 + 8ab) 

= vfaV a3 +Babe+ VbVb3 +Babe+ VcV c3 +Babe 

::; J a + b + cJ a3 + b3 + c3 + 24abc 

::; (a+b+c)2. 

The inequality thus follows. 

Third and the official solution. First we shall prove that 

a a4/3 
-r~==~> ~=---~--~= J a2 + 8bc - a4/3 + b4/3 + c4/3 ' 

or equivalently, that 

or equivalently, that 

The last inequality follows from the AM-GM inequality. Similarly, we have 

b b4/3 
--;;~:::::;;:= > -..,------:------:­
Jb2 + Sac - a4/3 + b4/3 + c4/3 ' 

c c4/3 

J c2 + 8ab ~ a4/3 + b4/3 + c4/3 . 

The result then follows by adding these three inequalities. 

3. Twenty-one girls and twenty-one boys took part in a mathematical con­
test. 

Each contestant solved at most six problems. 

For each girl and each boy, at least one problem was solved by both 
of them. 

Prove that there was a problem that was solved by at least three girls 
and at least three boys. 

Note. One useful way to investigate this problem is to_form an incidence 
matrix. Let B1, B 2 , ••. , B 21 be the boys and G1, ... , G21 be the girls and 
P1 , ... , Pn be the problems. Set up an incidence matrix with the columns 
indexed by the problems and the rows indexed by the students. The entry 
at (S, Pi) is 1 if S solves Pi and 0 otherwise. We present two solutions based 
on this incidence matrix. 

First solution. Let bi be the number boys who solve Pi and 9i be the number 
of girls who wolve Pi. Then the number of ones in every row is at most 6. 
Thus .L:~=l bi ::; 6JBJ and .L:~=l 9i ::; 6JGJ. 



In this matrix the rows Bi and G j have at least a pair of ones in the 
same column because every boy and every girl solve a common problem. Call 
such a pair of ones a one-pair. Thus the number of one-pairs is at least 212 . 

However, counting by the columns, the number of one-pairs is~ bi9i· Thus 
we have 

Now suppose that the conclusion is false. Then bi 2:: 3 implies 9i ~ 2 
and vice versa. Let Pe be the set of problems, each of which is solved by at 
least 3 girls and at most 2 boys, PB be the set of problems, each solved by 
at least 3 boys and at most 2 girls and Px be the set of problems, each of 
which is solved by at most 2 boys and at most 2 girls. Thus 

b·g· < 2 """' b· +2 zz_ L...J z 

Now for any girl Gi, consider the matrix Mi with whose columns cor­
respond to problems solved by Gi and whose rows are all the boys. Then 
in this matrix, every row has at least a one. Thus there are at least 21 
ones in this matrix. By the pigeonhole principle, there is a column, say 
Pj with at least 4 ones. Thus each girl solves at least one problem in PB. 
Hence ~P.EPB 9i 2:: IGI or equivalently, ~P.EPaUPx 9i ~ 5IGI. Similarly, 
~P.EPB bi ~ L:P.EPBUPx bi ~ 5IBI. Thus we have 

a contradiction. 

Second solution. With the same notation as in the first solution, divide the 
incidence matrix Minto two part: MB which is formed by the columns in 
PB U Px and Me which is formed by the columns in Pe. The matrix M has 
441 one-pairs. Thus one of these two submatrices, say MB, has at least 221 
one-pairs. (The case for Me foolows by symmetry.) Thus one of the girls, 
say G1 , contributes at least 11 one-pairs in MB. Since each one in row G1 
contributes at most 2 one-pairs in MB, there are 6 ones in row G1 in MB. 
This means the row G1 in Me does not have any ones. Thus G1 contributes 
at most 12 one-pairs in M. But G1 should contribute at least 21 one-pairs 
and we have a contridiction. 

Third solution. Suppose each problem Pi is solved by 9i girls and bi boys. 
Then I: gibi 2:: 212 = 441 since each boy and each girl solved a common 
problem. We assume that the conclusion is false, i.e. min{gi, bi} ~ 2. We 
also assume that each problem is solved by at least one boy and at least one 
girl. So 

g·b· 
g .+ b· > 2....!:. + 1.5 and 

l l- 2 

n 

L 9i + bi 2:: 220.5 + 1.5n. 
i=l 



Since each boy and each girl solved at most 6 problems, we have :E 9i + bi ::::; 
6 x 21 x 2 = 252. From these we haven::::; 21. 

Now consider a 21 x 21 grid, with one side representing girls, the other 
boys. Each cell in the grid is filled with the problems solved by both the 
corresponding boy and girl. There are at most 6 problems in each row and 
each column and each cell must contain at least one problem. In each row ~ 
there is problem Pi that appears at least three times. Similarly, each column 
Ci has such a problem Pj. If Pi = Pj for some i,j, then this problem is 
solved by three boys and three girls. So we assume that {Pi} and {P'j} are 
disjoint. Also if there exist i, j, k such that Pi = Pi = Pk! the this problem 
is solved by three girls and three boys. So the set {Pi} contains at least 11 
problems. Similarly, the set { Pj} contains at least 11 problems. Thus there 
are at least 22 problems, a contradiction. 

4. Let n be an odd integer greater than 1, and let k11 k2 , ... , kn be given 
integers. For each of the n! permutations a = (a11 a2 , ... , an) of 1, 2, ... , n, 
let 

n 

S(a) = L kiai· 
i=l 

Prove that there are two permutations b and c, b -=f. c, such that n! is a divisor 
of S(b)- S(c). 

Official solution. This is the standard double counting argument. Compute 
the sum :E S(a), over all permutations. For each i = 1, 2, ... , n, the term 
kji, j = 1, 2, ... , n, appears (n- 1)! times. Thus its contribution to :E S(a) 
is (n- 1)!kii. Thus 

LS(a) = (n-1)!LiLki = (n~ 1 )! Lki 
i j j 

Now suppose that the conclusion is false. Then the set {S(a)} is a complete 
set of residues mod n!. Thus 

L (n! + 1)n! n! 
S(a) = 1 + 2 + .. · + n! = = - ¢ 0 (mod n!). 

2 2 

But from (*), we have :E S(a) = n![(n + 1)/2] :E kj = 0 (mod n!). (Note 
( n + 1) /2 is an integer as n is odd.) Thus we have a contradiction. 

5. In a triangle ABC, let AP bisect LBAC, with P on BC, and let BQ 
bisect LABC, with Q on CA. 

It is known that LBAC = 60° and that AB + BP = AQ + QB. 

What are the possible angles of triangle ABC? 

Solution. Extend AB to X such that BX = BP. Similarly, let Y be the 
point on AC (extended if necessary) on the opposite side of Q as A such 
that BQ = QY. Since AB + BP = AQ + QB, this implies that AX = 



AY by construction, and hence ~AXY is equilateral with AP being the 
perpendicular bisector of XY. 

A 

We consider first the case where Y does not coincide with C and lies on 
AC extended (as in the figure). Let LABQ = LCBQ = x. Then since 
BX = BP, LBXP = LBPX = x. Also, LBQC = 60° + x and BQ = QY 
imply that LQ BY = LQY B = 60° - ~, so LP BY = 60° - 3;. Since AP 
is the perpendicular bisector of XY, LP XY = LPY X, so that LPY C = 
LPXB = x. Thus, LPYB = LQYB-x = 60°- 3x. HenceLPBY = LPYB 
and P B = PY = P X, which implies that !:iP BX' is equilateral and x = 60°. 
However, this is a degenerate case since LBAC = 60° and LABC = 2x = 
120°. The case where Y does not coincide with C and lies in the interior of 
AC is similar, except that this time LP BY = LPY B = 3

; - 60°. We once 
again reach the conclusion that !:iP B X is equilateral and x = 60°, so this is 
a degenerate case once again. 

This leaves just one case to consider where Y coincides with C. In this 
case, BQ = QC and so LABQ = LCBQ = LBCQ = 18003600 = 40°. We 
can verify that this 40°-60°-80° triangle verifies the condition of the question: 
Extend AB to X so that BX = BP. Then !:iAPX is congruent to !:iAPC, 
since LPXB =LACE= 40°, LEAP= LCAP = 30° and AP is a common 
side. It follows that P X = PC and so LP XC = LPG X = 20°. Hence, 
LAX C = LAC X = 60°, so !:lAX C is equilateral. Thus, AX = AC * 
AB+BX=AQ+QY * AB+BP=AQ+QB. QED. 

6. Let a, b, c, d be integers with a> b > c > d > 0. Suppose that 

ac + bd = (b + d +a- c)(b + d- a+ c). 

Prove that ab + cd is not prime. 

First solution. Write the original condition as 

a 2 
- ac + c2 = b2 + bd + d2 

Assume that ab + cd = p is prime. Then a = (p - cd) jb. Substituting this 
into ( * ), we get 

p(ab- cd- cb) = (b2 - c2)(b2 + bd + d2
). 

since 1 < b2 - c2 < ab < p, we have pI (b2 + bd + d2 ). But 

b2 + bd + d2 < 2ab + cd < 2p, 



we have b2 + bd + d2 = p. Hence, by equating the expressions for p, we get 

b(b + d- a) = d(c- d). 

Since gcd( b, d) = 1, we have b I ( c- d), a contradiction because 0 < c- d < b. 

Second and the official solution. Suppose to the contrary that ab + cd is 
prime. Note that 

ab + cd =(a+ d)+ (b- c)a = m · gcd(a + d, b- c) 

for some positive integer m. By assumption, either m = 1 or gcd(a+d, b-e) = 
1. 

Case (i): m = 1. Then 

gcd(a + d, b- c)= ab + cd > ab + cd- (a- b + c +d) 

= (a+ d)(c- 1) + (b- c)(a + 1) 

~gcd(a+d,b-c). 

which is false. 

Case (ii): gcd(a+d), b- c)= 1. Substituting ac+bd = (a+d)b- (b- c)a 
for the left hand side of a+ c + bd = (b + d +a- c)(b + d- a+ c), we obtain 

(a+ d)(a- c- d) = (b- c)(b + c +d). 

In view of this, there exists a positive integer k such that 

a-c-d=k(b-c), 

b+c+d=k(a+d). 

Adding we get a+ b = k(a + b- c +d) and thus k(c- d) = (k- 1)(a +b). 
Recall that a > b > c > d. If k = 1 then c = d, a contradiction. If k ~ 2 then 

a contradiction. 

k a+b 
2> --=-->2, 

- k-1 c-d 


