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31. A More Challenging Shortest Route Problem 

We have learnt in Section 6 [21] that the number of shortestP- Q routes in the 4 x 2 
rectangular grid of Fig. 31.1 is, by (BP), equal to the number of 6-digit binary sequences with 4 

O's and 21's, which is ( ~} 

(0,2) Q(4,2) 

P(O,O) (4,0) 

Fig. 31.1 

In general, in the rectangular coordinate system of Fig. 31.2, the number of 
shortest routes from P(a,b) to Q(c,d), where a, b, c, d are integers with 
a$ c and b $ d, is given by 

(
(c+d)-(a+b)) or ((c+d)-(a+b)) (31.1) 
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Fig. 31.2 



Consider the case when 0 = (0,0) and A= (n,n), where n is a positive integer. By 

(31.1), the number of shortestO- A routes is given by (
2
:} As shown in Fig. 31.3 (where 

n = 4 ), we observe that the( 
2
:) shortest 0- A routes can be divided into two groups : those 

that cross the diagonal y = x(see (i)) and those that do not (see (ii) and (iii)). 

A(4,4) A(4,4) A(4,4) v / / 
/ v / 

~ X ~ f'X ~ X 

L L ~. 
0(0,0) 0(0,0) 0(0,0) 

(i) crossing y=x (ii) not crossing y=x 
but meeting y=x internally 

Fig. 31.3 

(iii) not meeting y=x internally, 
and so not crossing y=x 

Around 1887, the French combinatorist Desire Andre (1840-1917) studied the following 
problem. 

A I How may shortest routes from O(O,O)to A(n,n) are there 
_j which do not cross the diagonal y = x in the rectangular 

coordinate system? (31.2) 

For convenience, let us denote by f(n) the number of such shortest routes from 0(0,0) 
to A(n,n). For n = 1,2,3, all such routes and the values of f(n) are shown in Table 31.1. 

n the desired routes f(n) 
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(0,0) (0,0) 
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In what follows, we shall present Andre's elegant idea in solving the problem. 

By translating a route in the coordinate system one unit to the right as shown in Fig. 
31.4, we see that there is a 1-1 correspondence between the family of shortest routes from 

~ 0(0,0) to A(n,n) that do not cross y = x and the family of shortest routes from P(1,0) to 
Q(n + l,n) that do not meet y = x. 

y=x 

0(0,0) 

Y=X 

0(0,0) 

Thus, by (BP), we have: 

A(3,3) ~----tQ(4,3) 

Y=X 

P(l,O) 

A(3,3) r------tQ( 4,3) 

y=x 

P(l,O) 

Fig. 31.4 

j(n) is equal to the number of shortest routes from 
P(l,O) to Q(n + 1,n) that do not meet y = x in the 
coordinate system. (31.3) 

Now, let g(n) denote the number of shortest routes from P(1,0) to Q(n + 1,n)that meet 

y = x. Clearly, f(n)+ g(n)is the number of shortest routes from (1,0) to (n+l,n). Thus, by 
(31.1 ), we have: 

(31.4) 1 

Accordingly, to evaluate f(n), we may, in turn, evaluate g(n). 

"'-"' But how to evaluateg(n)? Is it a more difficult problem? Let us first of all consider an 
• example and make some observations. 
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Fig. 31.5 shows a shortest route from P(1,0) to Q(8, 7) (here, n = 7) that meets y = x. 

A(7,7) 
,------------------>>---- Q(8, 7) 

(2,4) 

(2,2) 

0(0,0) P(l,O) (2,0) 

Fig. 31.5 

Imagine that we are now traversing the route from P to Q. Let X be the point where the route 
meets y = x for the first time (in Fig 31.5, X= (2,2); note that such a X always exists). 

Consider the reflection of this part of the route from P to X with respect to y = x as shown in 
Fig 31.6. Beginning with this image of reflection and following the rest of the original shortest 
route from X to Q, we obtain a shortest route from p'(0,1) to Q(8,7). 

P'(O,l) 

A(7,7) 
,-----------------j>--- Q(8, 7) 

(2,4) 

r-------+r X(2 ,2) 

0(0,0) P(l,O) 

Fig. 31.6 

The reader may check that this reflection does provide a 1-1 correspondence between 
the family of shortest routes from P(1,0) to Q(8,7) that meet y = x and the family of shortest 

routes from p'(0,1) to Q(8,7). Thus, by (BP) and (31.1), 

g(7) = = . 
[
8+7-1) [14) 

8 6 

In general, we have 

g(n) = = . 
(
n+1+n-1) ( 2n) 

n+1 n-1 
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Combining this with (31.4), we see that 

That is: 

the number of shortest routes from 0(0,0) to 
A(n,n) which do not cross the diagonal: y = x 

= f(n) 

= n~1(2:} 

In particular, f(1) = 1, f(2) = 2 and f(3) = 5, which agree with what were shown in 
Table 31.1. 

32. Catalan Numbers 

The numbers: 

1, 2, 5, 14, 42, 132, 429, ... , _ ._ , ... 1 (2n) 
n+1 n 

that have just been obtained above are called Catalan numbers after the Belgium 
mathematician Eugene Charles Catalan. 

Catalan (1814- 1894) 



Indeed, around 1838, Catalan studied the following problem: 

I B I Consider the product of n(2! 2) numbers: 

~ X,. ·Xz'"Xn. 

How many ways are there to put n - 1 pairs of parentheses 
'(,)' on it so that there are terms a· b bracketed by each pair 
of parentheses? 

The ways of parenthesizing x,_ • • • xn for n = 2, 3, 4 are shown in Table 32.1. 

n ~ ·Xz . ... ·Xn number of ways 

2 (X,. ·Xz) 1 

3 ((X,. ·Xz)·~), (X,. ·(Xz ·~)) 2 

4 (((X,.. Xz). ~)· x4), 

((X,.. (xz . x3)). x4), 

((.x,. · x2) · (x3 · X4)), 5 

(.x,_. ((xz. x3). x4)), 

(X,.. (xz. (x3. x4))) 

Table 32.1 

It turns out the numbers of ways obtained are 1, 2 and 5, and these are the first three Catalan 
numbers. 

Note. It was reported in [22] that the Catalan sequence was found and studied by a Mongolian 
mathematician Ming An-Tu (1692-1763) in the 18th century. 

Let us proceed to present another problem which is equivalent to the one introduced by 
Just [19]: 

I C I For each positive integer n, how many 2n-digit binary sequences 
~ b1b2 ···b2n with nO's and n 1 's are there such that for each 

i = 1, 2, ... , 2n, the number of 0' s is larger than or equal to the number of 1 's in 

the subsequence b1b2 • • ·bi? 

-
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Table 32.2 shows all such binary sequences for n = 1,2,3. Notice that the numbers of 
such sequences are again the first three Catalan numbers. 

blb2 ···bzn 
number of such 

n 
sequences 

1 01 1 

2 0011,0101 2 

3 000111,001011,001101,010011,010101 5 

Table 32.2 

The solution of Problem (A) given by Andre gives rise to the Catalan numbers: 

-
1
-(

2n) The answers of the first three initial cases for Problems (B) and (C) are 1, 2 and 5, 
n+1 n · 

which are Catalan numbers. Is it true that the answers of Problems (B) and (C) for general 
cases are also Catalan numbers? 

Yes, they are! In Table 32.3, we exhibit by examples 1- 1 correspondences among the 
routes for Problem (A), the ways of parenthesizing X:t ···xn for Problem (B) and the binary 

sequences for Problem (C); and we leave it to the reader to figure out the rules of the 
correspondences. 

Problem (C) Problem (A) Problem (B) 
(n = 3) (n = 3) (n =4) 

000111 I (((.x; . Xz). x3). x4) 
I 

__ _I 

I 
((X:t . (x2. X:3). x4) 001011 _ _r 

001101 ~ ((.x;. x2). (X:3 . x4)) 

_ _I 

I 
010011 s-' (.x; . ((xz. x3). x4)) 

010101 _I (.x; . (Xz . (X:3. x4))) 

Table 32.3 



One of the more general problems of this type, known as the Ballot Problem, is stated 
below. 

The Ballot Problem I X and Yare the two candidates taking part in an 
election. Assume that at the end X receives x votes and 

Y receives y votes with x > y (and so X wins). What is the probability that X 
always stays ahead of Y throughout the counting of the votes? 

To find out the desired probability, the essential part of the solution is to find out the 
number of ways that the ballots are proceeded in such a way that when they are counted one at a 
time the number of votes for X is always more than that for Y. This problem is clearly an 
extension of Problems (A) and (C). Employing the ideas and techniques used to solve Problem 
(A), Andre solved in 1887 this more general problem. Indeed, the Ballot Problem was first 
posed and solved by Joseph Louis Francois Bertrand (1822-1900) in the same year, i.e., 1887. 
The reader may refer to [12] for more details and to [2] for the history and some generalizations 
of the problem. 

It was said that in 1751, the Swiss mathematician Leonard Euler (1707-1783) proposed 
to Christian Goldbach (1690-1764) the following famous problem, which was later solved by 
Johann Andreas von Segner (1704-1777) in 1758 and by Catalan in 1838 using different 
methods. 

(D) Euler's Polygon Division Problem I A triangulation of an n-sided 
t-------------------' polygon, where n ~ 3, is a 

subdivision of the polygon into triangles by means of its nonintersecting 
diagonals. How many different triangulations are there of an n-sided 
polygon? 

All the triangulations of an n-sided polygon, where n =3,4,5, are shown in Table 32.4. The 
reader may notice that the respective numbers of triangulations are the first three Catalan 
numbers. 

the triangulations 
number of 

n 
triangulations 

3 6 1 

4 [S;J 0 2 

5 

([s;CSJ€;::;&\[2; 
5 

Table 32.4 
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Finally, let us introduce another interesting problem. 

There are 2n(n;::: 1) distinct fixed points on the 

circumference of a circle. How many ways are there to 
pair off them by n nonintersecting chords? 

Table 32.5 shows all the ways for n = 1, 2, 3. Again, the number of ways are the first 
three Catalan numbers. 

n pairing off 2n points on the circumference of a circle number of ways 

1 8 1 

2 0 0 2 

3 e 0 0 5 

0 0 
Table 32.5 

The reader is invited to show that the numbers of ways for Problems (D) and (E) are 
indeed Catalan numbers by establishing 1- 1 correspondences between Problem (D) (resp., (E)) 
and any of Problems (A) - (C). 

For more examples, interpretations and generalizations of Catalan numbers, we include 
at the end of this article a number of references to which the reader may wish to refer. 

This is the last issue of my series of articles on Counting. I would like to take this 
opportunity to express my sincere thanks to your patiently reading; and to the Editorial Board of 
Medley for their support. Readers may like to know that Dr Tay EG and I have revised the ftrst 
six articles of this series and complied them into a booklet which will be published soon. 
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