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Mathematical Competitions in Croatia 2000

Selected problems

1. Find all integer solutions of the equation

1 2 3
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2. The incircle of AABC touches its sides BC, CA, and AB in
the points A;, B; and Cj, respectively. Determine the angles of
AA;B;C; in terms of angles of AABC.

3. Let ABCD be a square with side length 20. Let T}, : =
1,2,...,2000, be points in its interior so that no three points from
the set S = {A,B,C,D}U{T; : i = 1,2,...,2000} are collinear.
Prove that at least one triangle with vertices in S has area less
than 5.

4. The circle with centre on the base BC of an isosceles triangle
ABC is tangent to equal sides AB, and AC. Let P and Q be
points on the sides AB and AC, respectively. Prove that

BC?
4
if and only if P(Q is tangent to his circle.

5. Let n(> 3) positive integers be written on a circle so that
each of them divides the sum of its neighbours. Denote

PB.-CQ =

_an+a2+a1+a3+“_a'n—2+a'n+a'n—1+a1
ai a2 an-—1 Qn

Sn

Determine the maximum and minimum of S,,.
6. Let S={keN:ae€Na?|k=a=1}. Foranyn €N,

prove that
S LAk = n

keS

Note: For any real number z, I_mJ 18 the greatest integer less than
or equal to x.




|Bulgarian Mathematical Olympiad, 1994 I

Selected problems from competitions of various levels.

1. Thirty-three natural numbers are given. The prime divisors
of each of the numbers are among 2,3,5,7,11. Prove that the
product of two of the numbers is a perfect square.

2. Let
f(x) = z* — 42® + (3 + m)z? — 12z + 12

where m is a real number.

(a) Find all integers m such that the equation f(z) — f(1 —
z) + 423 = 0 has at least one integer solution.

(b) Find all values of m such that f(z) > 0 for all real num-
ber z.

3. Let Ny be the set of nonnegative integers and f(n) is a func-
tion f : No — Np such that f(f(n)) + f(n) = 2n + 3 for every
n € Ny. Evaluate f(1993).

4. A convex quadrilateral ABCD is inscribed in a circle with
centre O and diameter 25. P and @ are points on AD and CD,
respectively, such that OP L AD and OQ 1 CD. Find the
lengths of the sides of ABCD if the lengths of AB, BC, CD, DA,
OP, OQ are distinct natural numbers.

5. A point D lies on the side AB of AABC. The excircle k; of
AACD, which touches the side CD externally, touches the sides
AC and AD at points P and L, respectively. The excircle ks of
ABCD, which touches the side CD externally, touches the sides
BC and BD at points @ and K, respectively. The incircle k3 of
AACD touches the sides AC and AD at the points M and E,
respectively and the incircle k4 of ABCD touches the sides BC
and BD at the points N and F', respectively.

(a) Prove that FK = EL = MP = NQ.

(b) If ZACB = 90° determine the position of the point D
so that the area of the convex quadrilateral M N PQ is
minimal.

6. Let n > 1 be a natural number and
A, = {z € N: gcd(z,n) # 1}.

The number n is called interesting if for any z,y € A,,, we have
z +y € A,. Find all interesting n.




7. There is more than one bus routes in a town. Every two bus
routes have only one common station and every two stations are
connected by a bus route.

(a) Find the number of bus routes if every route has just 3
stations.

(b) Find the number of stations on every bus route if the
number of routes is 13 and every route has at least 3
stations.

(c) If every station is a vertex of a regular polygon, prove
that in case (a) each route can be represented by sca-
lene triangle and that in case (b) each bus route can be
represented by a polygon such that the lengths of the
segments whose end points are vertices of the polygon
(representing the bus route) are all different.

8. Find all functions f : R — R such that

zf(z) —yf(y) = (z—y)f(zr+y) forany z,y€eR.

9. Let I be the centre of the incircle of the nonisosceles triangle
ABC'. The incircle touches the sides BC, CA, AB at the points
A, By, C4, respectively. Prove that the centres of the circumcir-
cles of AAIA;, ABIB,, ACIC are collinear.

l 42nd International Mathematical Olympiad I

Washington DC, United States of America, July 2001

1. Let ABC be an acute-angled triangle with circumcentre O.
Let P on BC be the foot of the altitude from A.

Suppose that ZBCA > ZABC + 30°.

Prove that ZCAB + ZCOP < 90°.
2. Prove that

a b c

e T
Va2 +8bc +Vb2+8ca +c?+ 8ab

for all positive real numbers a, b and c.




3. Twenty-one girls and twenty-one boys took part in a mathe-
matical contest.

Each contestant solved at most six problems.

For each girl and each boy, at least one problem was
solved by both of them.

Prove that there was a problem that was solved by at least
three girls and at least three boys.

4. Let n be an odd integer greater than 1, and let kq,k2,...,kn
be given integers. For each of the n! permutations a = (a3, az,...,a,)
of1,2,...,n, let

S(a) = ik,-a,-.
=1

Prove that there are two permutations b and ¢, b # c, such that
n! is a divisor of S(b) — S(c).

5. In a triangle ABC, let AP bisect ZBAC, with P on BC, and
let BQ bisect ZABC, with Q on CA.

It is known that ZBAC = 60° and that AB+BP = AQ+QB.
What are the possible angles of triangle ABC?
6. Let a,b,c,d be integers witha > b > ¢ > d > 0. Suppose that

ac+bd=(b+d+a-c)(b+d—a+c).

Prove that ab + cd is not prime.




o Solutions -

Hong Kong (China) Mathematical Olympiad, 1999

1. PQRS is a cyclic quadrilateral with ZPSR = 90°; H, K
are the feet of the perpendiculars from Q to PR, PS (suitably
extended if necessary), respectively. Show that HK bisects QS.

Two different solutions were received. First we present the so-
lution provided independently by Zachary Leung Ngai Hang (Anglo-
Chinese School (Independent)), Meng Dazhe (River Valley High
School), R. Pargeter (England) and Lu Shangyi (National Uni-
versity of Singapore).

Drop a perpendicular from @ to RS, meeting it at J. H,
K and L are collinear as they lie on the Simpson line from @ to
APSR. Thus QJSH is a rectangle with HJ and QS as diagonals.
Thus HK bisects QS.

(Note: The feet of the perpendiculars from Q to APSR are
collinear. The line is called the Simpson Line. This fact can
be proved by considering cyclic quadrilaterals and is left to the
reader.)

Nexzt we have the solution by Tan Kiat Chuan and Nicholas
Tham (Raffles Junior College) and Calvin Lin Zhiwei (Hwachong
Junior College).

Let HK meet QS at X. We have QK || RS since they are
both perpendicular to KS. Also since ZQHP = ZQKP = 90°,
QHKP is cyclic. Thus

£LKQS = ZQSR = LQPR = ZQKH.
Therefore QX = XK. Also
ZHKS =90° — ZQKH =90°KQS = ZQSK.
So XK = X S. Therefore HK bisects QS.

2. The base of a pyramid is a convex polygon with 9 sides.
Each of the diagonals of the base and each of the edges on the
lateral surface of the pyramid is coloured either black or white.
Both colours are used. (Note that the sides of the base are not
coloured.) Prove that there are three segments coloured the same
colour which form a triangle.




Correct solutions were received from Meng Dazhe (River Val-
ley High School), Nicholas Tham, Tan Kiat Chuan, Julius Poh
(Raffles Junior College), Calvin Lin (Hwachong Junior College),
Joel Tay Wei En, Zachary Leung Ngai Hang (Anglo-Chinese School
(Independent)). We present the similar solution by Meng, Tham,
Lin and Tay.

Let P be the apex of the pyramid. By the pigeonhole prin-
ciple, at least 5 of the lateral sides, say PA, PB, PC,PD, PE of
the pyramid are coloured with the same colour, say white. As-
sume that the five vertices A, B,C, D, E appear in that order at
the base. Among the five edges, AB, BC,CD,DE and EA, at
least one, say AB, is a diagonal. Then AB, BD and DA are all
diagonals. If one of them is coloured white, then these together
with P form a white triangle. Otherwise, ABD is a black triangle.

3. Let s,t be given nonzero integers, and let (z, y) be any ordered
pair of integers. A move changes (z,y) to (z +t,y — 8). The pair
(z,y) is good if after some (may be zero) number of moves it
describes a pair of integers that are not relatively prime.

(a) Determine if (s,t) is a good pair.
(b) Show that for any s and ¢ there is pair (z,y) which is
not good.

Solutions by Zachary Leung Ngai Hang (Anglo-Chinese School
(Independent)), Calvin Lin (Hwachong Junior College), Lu Shangyi
(National University of Singapore) and Tan Kiat Chuan (Raffles
Junior College). We present solution by Tay.

(a) If ged(s, t) Zé 1, then (s,t) is a good pair. Thus we suppose
ged(s,t) = 1. Let s% +t2 = k. After m moves, we get (s +mt),t —
ms) and

s(s + mt) + t(t — ms) = k. (%)
Since ged(s,t) = 1, ged(k, s) = ged(k,t) = 1. Thus there exists
m' such that m't = —s (mod k). Then from (*) we also have
m's=t (mod k). Thus ged(s + m't,t —m's) > k > 1 and (s,t)
is good.

(b) Let gecd(s,t) = d and 8’ = s/d, t' = t/d. Choose (z,y)
such that d = sz+ty. After i moves we get (z;,y;) = (z+it, y—is).
Thus sz; +ty; = sc+ty =dor s'z; +t'y; =1, i.e., ged(z;, y:) =1
for all . Thus (z,y) is not good.

4. Let f be a function defined on the positive reals with the
following properties:

1) f(1)=1,
(2) fz+1) =zf(z),
(3) f(x) = 109(®), where g(z) is a function defined on the reals
satisfying
9ty + (1 - t)2)) < tg(y) + (1 — t)g(2)




for all y and z and for 0 <t < 1.
(a) Prove that

tlg(n) — g(n —1)] < g(n +1t) — g(n) < t[g(n +1) — g(n)]
where n is an integer and 0 <t < 1.
(b) Prove that 4 < f(3) < 3v2.

The following is the combination of solutions by Lu Shangyi
(National University of Singapore), Calvin Lin (Hwachong Junior
College) and Tan Kiat Chuan (Raffles Junior College).

(a) By condition (3), the function g is concave upwards. This
means that if A and B are two points on the graph of y = g(z),
then the portion of the graph between A and B lies beneath the
line AB. The first expression is the gradient of the line joining
g(n—1) to g(n), the second is the gradient of the line joining g(n)
to g(n + t) while the third is the gradient of the line joining g(n)
to g(n + 1). Thus the inequality follows:

gn)—g(n—-1) gn+t)—g(n) _gn+1)—g(n)
n—(n-1 ~— @+t)-n ~ ((n+1)—-n
for0<t<1.

(b) First we note that f(2) = 1f(1) = f(1). Also f(n)/f(n—
1) =n — 1. From (a) we have

tlg(n) — g(n — 1)] < g(n +1t) — g(n) < t[g(n + ) — g(n)].
Since f(z) = 109®), we have log f(z) = g(z). Substituting into
(a) we have

t{log f(n) — log f(n — 1)] < log f(n +t) — log f(n)
< t[log f(n + 1) — log f(n)].

Simplifying we get

) svm () s (1552)

or

1= (L) s (Lot0) o (LoD e

fln—1) f(n) f(n)
Let n =2 and t = 1/2, we have

1< £(8/2)/F2) = £(5/2) = 51(5 = 3/(3) < V2.

Hence 4/3 < f(1/2) < 4v/2/3.
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| Greek National Mathematical Olympiad 2000 I

1. Consider the rectangle ABCD with AB = a, AD = 3. A
line £ passing through the centre O of the rectangle meets the side
AD at the point E such that AE/ED = 1/2. On this line take an
arbitrary point M lying inside the rectangle. Find the necessary
and sufficient condition on a and 8 so that distances from M to
the sides of the rectangle AD, AB, DC and BC, taken in that
order, form an arithmetic progression.

The following is a combination of solutions by Lu Shangyi
(National University of Singapore) , Calvin Lin (Hwachong Ju-
nior College), R. Pargeter (England) and Joel Tay (Anglo-Chinese
School (Independent)).

Let z,y, z,t be the respective distances from M to the sides
AD,AB,CD,BC. If they form an arithmetic progression, then

B E , ® +t =y + z and hence a = 3 which is a necessary condition.
z Z y Now suppose that a = 3. Let § = z/a. Note that 0 < 6 <
M 1. The distances in the question are z = fa, y = (6 + 1)a/3,
. z=(2-6)a/3,t = (1 — f)a. These are obviously in arithmetic
progression. Thus o = [ is also sufficient.
C B

2. Find the prime number p so that 1+ p? + p® + p* is a perfect
square, i.e. the square of an integer.

Similar solutions by Calvin Lin (Hwachong Junior College),
Lu Shangyi (National University of Singapore) and Joel Tay (Anglo-
Chinese School (Independent)).

Let f(n) = 1+ n? +n® + n%. Indeed f(1) = 4 = 22. We'll
show that for all positive integer n > 1, f(n) is not a square. First
note that

(n®+n-12<1+n%+n+nt
& nt4mP-n?-2n+1<1+n?+nd+nt
& nn+1)>0

which is true when n > 0. Also
1+n2 +n%4+nt < (n® +n)?
& 14n?2+nd+nt<nt+2n3+n?
s nd>1. :

Thus when n > 1, we have

(n? +n—-1)2 <1+n?+nd+n* < (n? +n)2




Thus f(n) is not a square when n > 1.

3. Find the maximum positive real number k such that

Ty 1
e
V(@@ +y?)(Bz2 +y?) T k

for all positive real numbers = and y.

Similar solutions by Joel Tay (Anglo-Chinese School (Inde-
pendent)), Lu Shangyi (National University of Singapore) and
Calvin Lin (Hwachong Junior College).

We have

s i e X
V@@ +y?)Bz2 +y%) " k
L 2 1 22V(302 4 22
p2 < (@ +y) (32" +37)
Let 22 = a, y2 = b. Then
B3 T 3a? + b?
=l

Since the al)ove inequality must hold for all positive real numbers
a,b, and 3¢£8 > 2,/3, we have k% —4 < 2v/3.Hence the maximum

value of k satisfies k2 =4+ 2v3 or k = \/2(2+\/§) =1++3.

4. For the subset A;,...,Azgpo of the set M, we have |A;| >
2|M|/3, i = 1,2,...,2000, where |X| denotes the cardinality of
the set X. Prove that there exists € M which belongs to at
least 1334 from the subsets A;.

Solution by Calvin Lin (Hwachong Junior College).

Let M = {a1,a2,...,a,}. Form the incidence matrix with
the rows indexed by a;,as,...,a, and the columns indexed by
Ay, Ag,...,A200. The entry at (a,,-,AJ-) islifa; € Aj and is 0
otherwise. We shall count the total number of ones in the matrix
in two ways. Counting by the columns, the number of ones is at
least 4000n/3. The average number of ones per row is 4000/3.
Hence there is one row with [4000/3] = 1334 ones. This means
that the corresponding element belongs to at least 1334 of the
sets.




XII Asian Pacific Mathematical Olympiad

March 2000

1. Compute the sum

101 3
i L
S_§I—3£Di+3w?

TeT-
Solution by Joel Tay (Anglo-Chinese School (Independent))
and Lu Shangyi (National University of Singapore).

Note that

for z; =

z} i3

1—3z; + 322  101(3: — 303: + 1012)°

Also if j = 101 — %, then
352 — 3035 + 1012 = 3:2 — 303: + 1012.
Thus

3 i (101 — 4)3
1-3z;+32z2  101(3i2 — 303: + 1012)

Hence s
3
T z;

=,
1 — 3z; + 322 s 1—3xj+3x§

So the sum is 51.

2. Given the following triangular arrangements of circles, each
of the numbers 1,2,...,9 is to be written into one of these circles,
so that each circle contains exactly one of these numbers and

(i) the sums of the four numbers on each side of the triangle are
equal;

(ii) the sums of the squares of the four numbers on each side of
the triangles are equal.

Find all ways in which this can be done.
Official solution.

Let s be the sum of the fours numbers on each side of the
triangle and let S be the sum of the squares of the four numbers
on each side of the triangle. Let z,y,z be the numbers in the




corners of the triangle, with z < y < 2. Finally, let a,b, a < b, be
the two numbers on the same side as y, 2.

3s=45+z+y+=2
38 =285+ z% + 3% + 22

Thus
3|z+y+2z and 3|z?+y%+22

and it follows that =y =2z (mod 3).

Casel: =3,y =6,z =9: In this case s =21 and S = 137.
Thus
a+b=5 and a?+b%=20.

So there is no solution.

Case 2: z=1,y=4,z="7. In this case s =19 and S = 117.
Thus
a+b=8 and a®+4b% =052

So there is no solution.

Case 3: £ = 2,y = 5,2 = 8. Then s = 20,S = 126. In this
case s = 21 and S = 137. Thus

a+b=7 and a®+b%=3T.

So.a= 1,0=8.

By similar considerations, the numbers on the other sides can
be found to be unique. The solution is shown in the picture.

Thus there are 48 solutions since there 6 ways to place z, y, 2
at the corners and for each of these, there are 8 ways to place the
remaining 6 numbers.

3. Let ABC be a triangle. Let M and N be the points in which
the median and the angle bisector, respectively, at A meet the
side BC. Let Q and P be the points in which the perpendicular
at N to NA meets M A and BA, respectively, and O the point in
which the perpendicular at P to BA meets AN produced.

Prove that QO is perpendicular to BC.

Solutions by R. Pargeter (England) and Lu Shangyi (National
University of Singapore). We first present the official solution.

If /B = ZC, the proof is obvious. So we suppose without
loss of generality that /B < ZC. Produce BA to C’ so that
AC’' = AC. Then CC'||AN. Let BH be the perpendicular from
B onto C'C. Draw CP’ parallel to HB, intersecting AN in L
and AB in P’. Then AN produced bisects HH', at K say, where

® ©®

® O 6 6

o8MA4
10.
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H' € BH and P'H’||CC’. Draw the perpendicular MM’ from M
onto AN produced.

Since M is the midpoint of BC,

B

KB-KH KB-KH' H'B
2 2 2 Bt TR
/
AM/:AH%:%E.

/
From similar triangles we have NQ : AN = M'M : AM' = H'B :
\Co"H or NQ: HB = AN : C'H = NP : HB. Therefore

MM =

NQ:NP=H'B:HB=CH:C'H.

But
NP:NO=AN:NP=C'H: HB.

Therefore NQ : NO = CH : HB. Hence the right triangles
ONQ, CHB are similar, and since ON is perpendicular to HB,
OQ must also be perpendicular to BC.

Next is Lu’s solution using coordinate geometry. Pargeter
also has a solution along this line.

Let us set up a coordinate system. Let N be the origin, with
NO as the z-axis and NP as the y-axis. Let the coordinates of
P be (0,c) and the gradient of the line AB be m4p = m. Then
the equation of the line AB is given by y = mxz + c. Since AN is
the angle bisector at A, we have the equation of the line AC to be
y = —mz — c. Since BC passes through the origin, its equation is
of the form y = az. Then the coordinates of A, B and C are

A(z0), B(#:2), c(&522).

Since PO is perpendicular to AB, mpo = —1/m and the equation
of PO is given by y = —Z + c. Thus O(cm,0). Since M is
the midpoint of BC, its coordinates are given by M (mc/(a? —
m?),amc/(a? — m?)). Now M A intersects the y-axis at Q. Thus
z = 0 and y = mc/a. Hence the coordinates of Q are given by
Q(0,mc/a). Hence mog = —1/a and mpogmpc = —1 and hence
OQ is perpendicular to BC.

4. Let n,k be given positive integers with n > k. Prove that

e n" > n! 5 n"
n+1l kk(n—k)"* " kl(n—k)! ~ kk(n—k)n—F’

Solution.

A
W | T&
3
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Let b = n — k. We are required to prove that

n™ > k*p (:) and n" < (n+ 1)k*b® (:)

We have

n" = (k+b)" = (g) kob™ + (’1‘) Kbl 4 (:) k™80,

Since (})k*b® is one of the terms on the right, we have

n N\, kb
n >'(k)kb'

Next, for any j > 0,

(R (k+4)'(— )W
(i) ketibb=3 k!blk3
_(k+i)(k+ji—1)---(k+1) b %
% ki bb—1)---(b—35—1)
(K _ (k= )b+5)%
(i) ke—dbb+s k!blbd
4+ -1)---(b+1) k? g4
. bi k(k—1)---(k—j—1)
Since each term on the right is > (})k*b°, we have
n™ > (n+1) (:) k*pb.
5. Given a permutation (ao, a3, ...,a,) of the sequence 0,1, ...,

n. A transposition of a; with a; is called legal if i > 0,a; = 0 and
ai—1 + 1 = aj. The permutation (ao,a1,...,as) is called regular

if after a number of legal transpositions it becomes (1,2,...,n,0).
For which numbers n is the permutation (1,n,n —1,...,3,2,0)
regular?

Solution.

Let P, denote the permutation (1,n,n—1,...,3,2,0). First
we observe that P, is trivially regular for n = 1,2. Now consider
the case n > 3.

By a sequence of legal transpositions a, b,c,... we mean 0 is
legally transposed with a, then b, then ¢ and so on.
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If n is even, then after the sequence of legal transpositions
3,5,7,...,n—1, P, will be transformed into a permutation where
0 will be on the right of n and no further legal transposition is
possible. For example

(1,8,7,6,5,4,3,2,0) is transformed into (1,8,0,6,7,4,5,2,3).

Thus n is not regular if n is even.

So we assume that n is odd. We can write n = k27 — 1, where
k,j are positive integers. The sequence of legal transpositions
3,5,...,n transforms P, into

Q.=1,0,n-1,n,n—-3,n—2,...,2,3).

We shall encounter permutations like this frequently. So we intro-
duce the notation:
n(a,b) = [1,2° — 1]0[a2’, (a + 1)2° — 1]
[(a —1)2%a2% —1]...[2.2°,3.2° — 1][2°%,2.2° — 1]

where for any two integers s < ¢, [s,t] = (s,8+ 1,...,t). Thus
n(a,b) is a permutation of n = (a + 1)2° — 1. For example:

7(3,2) = (1, 3]0[12, 15][8, 11][4, 7]

=(1,2,3,0,12,13,14,15,8,9,10,11,4,5,6,7).

Also :
Qn=m((n—-1)/2,1) = n(k27"! - 1,1).

If a = 2¢ + 1 is odd, then 7(a,b) can be transformed, by the legal

transpositions

39 ..a2
2 b 3,820 BB 2 1

N L3P et 1 soli
into
[1,2° —1][2%,2.2° — 1]0[(a — 1)2%, a2® — 1][a2®, (a + 1)2° — 1]
...[2.2,3.2° — 1][3.2%,4.2° - 1]

= [1,25*1 — 1J0[e2b+, (€ + 1)25+! — 1]... [25+1,2.25%1 _ 1]
=m(6,b+1)




Thus 7(3,2) is tranformed into

m(1,3) =(1,2,3,4,5,6,7,0,8,9,10,11, 12,13, 14, 15).

If a is even, then the legal transpositions 2°,3.2%,..., (a—1)2°
transform 7 (a, b) into

[1,2° — 1]2°[a2®, (a + 1)2° — 1]0[(a — 1)2° + 1,a2® — 1]
...5.2°[3.2° +1,3.2° — 1][2.2%,3.2° — 1]3.2°[2" + 1,2.2° - 1].
From this no further legal transposition is possible since 0 is now

on the right of n = (a +1)2° — 1.

If n = k27 — 1, then P, can be transformed into Q, =
w(k29~1 — 1,1). From this it can be transformed into 7(k27-2 —
1,2), ..., 7(k -1, 7).

Ifk=1,n(0,1) =[1,n]. fk> 1, then k — 1 is even, and we
know that m(k — 1, j) cannot be legally transformed to [1,n].

Thus the only n which are regular are those that can be
written in the form n =27 — 1.




