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I 
Mathematical Competitions in Croatia 2000 

Selected problems 

1. Find all integer solutions of the equation 

1 2 3 
-+---=1. 
X y Z 

2. The incircle of ~ABC touches its sides BC, CA, and AB in 
the points A1, B1 and C1, respectively. Determine the angles of 
~A1B1 Ct in terms of angles of ~ABC. 

3. Let ABCD be a square with side length 20. Let Ti, i = 
1, 2, ... , 2000, be points in its interior so that no three points from 
the set S ={A, B, C, D} U {Ti : i = 1, 2, ... , 2000} are collinear. 
Prove that at least one triangle with vertices in S has area less 
than 1~. 
4. The circle with centre on the base BC of an isosceles triangle 
ABC is tangent to equal sides AB, and AC. Let P and Q be 
points on the sides AB and AC, respectively. Prove that 

BC2 

PB·CQ=-
4 

if and only if PQ is tangent to his circle. 

5. Let n(> 3) positive integers be written on a circle so that 
each of them divides the sum of its neighbours. Denote 

Determine the maximum and minimum of Sn. 

6. Let S = {k E N : a E N, a2 I k :::} a = 1}. For any n E N, 
prove that 

l:LVn/kJ =n. 
kES 

Note: For any real number x, LxJ is the greatest integer less than 
or equal to x. 



Bulgarian Mathematical Olympiad, 1994 

Selected problems from competitions of various levels. 

1. Thirty-three natural numbers are given. The prime divisors 
of each of the numbers are among 2, 3, 5, 7, 11. Prove that the 
product of two of the numbers is a perfect square. 

2. Let 
f(x) = x4

- 4x3 + (3 + m)x2
- 12x + 12 

where m is a real number. 

(a) Find all integers m such that the equation f ( x) - f ( 1 -
x) + 4x3 = 0 has at least one integer solution. 

(b) Find all values of m such that f(x) > 0 for all real num-
ber x. 

3. Let N0 be the set of nonnegative integers and f(n) is a func­
tion f : No --+ No such that f(f(n)) + f(n) = 2n + 3 for every 
n E N0 • Evaluate !(1993). 

4. A convex quadrilateral ABC D is inscribed in a circle with 
centre 0 and diameter 25. P and Q are points on AD and CD, 
respectively, such that 0 P ..l AD and OQ ..l CD. Find the 
lengths of the sides of ABC D if the lengths of AB, BC, CD, D A, 
0 P, OQ are distinct natural numbers. 

5. A point D lies on the side AB of ~ABC. The excircle k1 of 
~AC D, which touches the side CD externally, touches the sides 
AC and AD at points P and L, respectively. The excircle k2 of 
~BCD, which touches the side CD externally, touches the sides 
BC and BD at points Q and K, respectively. The incircle k3 of 
~ACD touches the sides AC and AD at the points M and E, 
respectively and the incircle k4 of ~BCD touches the sides BC 
and BD at the points N and F, respectively. 

(a) Prove that FK = EL = MP = NQ. 

(b) If LAC B = 90° determine the position of the point D 
so that the area of the convex quadrilateral M N PQ is 
minimal. 

6. Let n > 1 be a natural number and 

An {x EN: gcd(x, n) =f:. 1}. 

The number n is called interesting if for any x, y E An, we have 
x + y E An. Find all interesting n. 



7. There is more than one bus routes in a town. Every two bus 
routes have only one common station and every two stations are 
connected by a bus route. 

(a) Find the number of bus routes if every route has just 3 
stations. 

(b) Find the number of stations on every bus route if the 
number of routes is 13 and every route has at least 3 
stations. 

(c) H every station is a vertex of a regular polygon, prove 
that in case (a) each route can be represented by sca­
lene triangle and that in case (b) each bus route can be 
represented by a polygon such that the lengths of the 
segments whose end points are vertices of the polygon 
(representing the bus route) are all different. 

8. Find all functions f : 1R. -t 1R. such that 

xf(x)- yf(y) = (x- y)f(x + y) for any x, y E JR.. 

9. Let I be the centre of the incircle of the nonisosceles triangle 
ABC. The incircle touches the sides BC, CA, AB at the points 
A1, B1, C1, respectively. Prove that the centres of the circumcir­
cles of D.AIA17 D.BIB1 , D.CIC1 are collinear. 

42nd International Mathematical Olympiad 

Washington DC, United States of America, July 2001 

1. Let ABC be an acute-angled triangle with circumcentre 0. 
Let P on BC be the foot of the altitude from A. 

Suppose that LBC A > LABC + 30°. 

Prove that LCAB + LCOP < 90°. 

2. Prove that 

a b c > 1 J a2 + Bbc + Jb2 + Sea + J c2 + Bab -

for all positive real numbers a, b and c. 



3. Twenty-one girls and twenty-one boys took part in a mathe­
matical contest. 

Each contestant solved at most six problems. 

For each girl and each boy, at least one problem was 
solved by both of them. 

Prove that there was a problem that was solved by at least 
three girls and at least three boys. 

4. Let n be an odd integer greater than 1, and let k1 , k2 , •.. , kn 
be given integers. For each of the n! permutations a = ( a1, a2 , •.• , an) 
of.l, 2, ... , n, let 

n 

S(a) = L kiai. 
i=l 

Prove that there are two permutations b and c, b '# c, such that 
n! is a divisor of S(b)- S(c). 

5. In a triangle ABC, let AP bisect LBAC, with P on BC, and 
let BQ bisect LABC, with Q on CA. 

It is known that LBAC = 60° and that AB+ BP = AQ+QB. 

What are the possible angles of triangle ABC? 

6. Let a, b, c, d be integers with a > b > c > d > 0. Suppose that 

ac + bd = (b + d +a- c)(b + d- a+ c). 

Prove that ab + cd is not prime. 



Hong Kong (China} Mathematical Olympiad, 1999 

1. PQRS is a cyclic quadrilateral with LPSR = goo; H, K 
are the feet of the perpendiculars from Q to PR, PS (suitably 
extended if necessary), respectively. Show that HK bisects QS. 

Two different solutions were received. First we present the so­
lution provided independently by Zachary Leung Ngai Hang (Anglo­
Chinese School (Independent)), Meng Dazhe {River Valley High 
School}, R. Pargeter (England) and Lu Shangyi {National Uni­
versity of Singapore). 

Drop a perpendicular from Q to RS, meeting it at J. H, 
K and L are collinear as they lie on the Simpson line from Q to 
D.PSR. Thus QJSH is a rectangle with H J and QS as diagonals. 
Thus HK bisects QS. 

(Note: The feet of the perpendiculars from Q to D.PSR are 
collinear. The line is called the Simpson Line. This fact can 
be proved by considering cyclic quadrilaterals and is left to the 
reader.) 

Next we have the solution by Tan Kiat Chuan and Nicholas 
Tham {Raffles Junior College) and Calvin Lin Zhiwei (Hwachong 
Junior College). 

Let HK meet QS at X. We have QK II RS since they are 
both perpendicular to KS. Also since LQHP = LQKP =goo, 
QHKP is cyclic. Thus 

LKQS = LQSR = LQPR = LQKH. 

Therefore QX = X K. Also 

LHKS =goo- LQKH = gooKQS = LQSK. 

So X K = X S. Therefore H K bisects QS. 

2. The base of a pyramid is a convex polygon with g sides. 
Each of the diagonals of the base and each of the edges on the 
lateral surface of the pyramid is coloured either black or white. 
Both colours are used. (Note that the sides of the base are not 
coloured.) Prove that there are three segments coloured the same 
colour which form a triangle. 



Correct solutions were received from M eng Dazhe {River Val­
ley High School), Nicholas Tham, Tan Kiat Chuan, Julius Poh 
{Raffles Junior College), Calvin Lin (Hwachong Junior College), 
Joel Tay Wei En, Zachary Leung Ngai Hang (Anglo-Chinese School 
(Independent)). We present the similar solution by Meng, Tham, 
Lin and Tay. 

Let P be the apex of the pyramid. By the .pigeonhole prin­
ciple, at least 5 of the lateral sides, say P A, P B, PC, P D, P E of 
the pyramid are coloured with the same colour, say white. As­
sume that the five vertices A, B, C, D, E appear in that order at 
the base. Among the five edges, AB, BC, CD, DE and EA, at 
least one, say AB, is a diagonal. Then AB, BD and D A are all 
diagonals. Hone of them is coloured white, then these together 
with P form a white triangle. Otherwise, ABD is a black triangle. 

3. Lets, t be given nonzero integers, and let (x, y) be any ordered 
pair of integers. A move changes (x, y) to (x + t, y- s). The pair 
(x, y) is good if after some (may be zero) number of moves it 
describes a pair of integers that are not relatively prime. 

(a) Determine if ( s, t) is a good pair. 

(b) Show that for any s and t there is pair (x, y) which is 
not good. 

Solutions by Zachary Leung Ngai Hang {Anglo-Chinese School 
{Independent)), Calvin Lin (Hwachong Junior College), Lu Shangyi 
(National University of Singapore) and Tan Kiat Chuan {Raffles 
Junior College). We present solution by Tay. 

(a) H gcd(s, t) f 1, then (s, t) is a good pair. Thus we suppose 
gcd(s,'t) = 1. Lets +t2 = k. After m moves, we get (s+mt),t­
ms) and 

s(s + mt) + t(t- ms) = k. (•) 
Since gcd(s, t) = 1, gcd(k, s) = gcd(k, t) = 1. Thus there exists 
m' such that m't = -s (mod k). Then from (•) we also have 
m's = t (mod k). Thus gcd(s + m't, t- m's) > k > 1 and (s, t) 
is good. 

(b) Let gcd(s, t) = d and s' = s/d, t' = tjd. Choose (x, y) 
such that d = sx+ty. After i moves we get (xi, Yi) = (x+it, y-is). 
Thus sxi +tyi = sx+ty = d or s'xi +t'yi = 1, i.e., gcd(xi, Yi) = 1 
for all i. Thus (x, y) is not good. · 

4. Let f be a function defined on the positive reals with the 
following properties: 

(1) /(1) = 1, 
(2) f(x + 1) = xf(x), 

(3) f(x) = 1Qg(:z:), where g(x) is a function defined on the reals 
satisfying 

g(ty + (1- t)z)) < tg(y) + (1- t)g(z) 



for all y and z and for 0 < t < 1. 

(a) Prove that 

t[g(n) - g(n- 1)] < g(n + t) - g(n) < t[g(n + 1) - g(n)] 

where n is an integer and 0 < t < 1. 

(b) Prove that t < /(~) < tJ2. 
The following is the combination of solutions by Lu Shangyi 

(National University of Singapore), Calvin Lin (Hwachong Junior 
College) and Tan Kiat Chuan (Raffles Junior College). 

(a) By condition (3), the function g is concave upwards. This 
means that if A and B are two. points on the graph of y = g( x), 
then the portion of the graph between A and B lies beneath the 
line AB. The first expression is the gradient of the line joining 
g(n -1) to g(n), the second is the gradient of the line joining g(n) 
to g(n + t) while the third is the gradient of the line joining g(n) 
to g( n + 1). Thus the inequality follows: 

g(n)- g(n- 1) < g(n + t)- g(n) < g(n + 1)- g(n) 
n- (n- 1) - (n + t) - n - (n + 1) - n 

for 0 < t < 1. 

(b) First we note that /(2) = 1/(1) = /(1). Also f(n)/f(n-
1) = n -1. From (a) we have 

t[g(n) - g(n- 1)] < g(n + t) - g(n) < t[g(n + t) - g(n)]. 

Since f(x) = 1()9(:z:), we have log f(x) = g(x). Substituting into 
(a) we have 

t[log f(n) -log f(n- 1)) <log f(n + t) -log f(n) 

< t[log f(n + l) -log f(n)]. 

Simplifying we get 

1 ( f(n) )t < 1 (/(n + t)) < 1 (/(n + 1))t 
og f(n- 1) - og /(n) - og f(n) 

or 

(n -l)t = ( f(n) )t < (f(n + t)) < (f(n + 1))t = nt. 
f(n- 1) - f(n) - /(n) 

Let n = 2 and t = 1/2, we have 

1 < /(5/2)/ /(2) = /(5/2) = ~~(~ = ~ /(~) < v'2. 

Hence 4/3 < /(1/2) < 4J2/3. 

~t.M.-f)>~ 
~ 9f!J ~ 
t. I ~ -====-------------------- M B D L B Y 
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Greek National Mathematical Olympiad 2000 

1. Consider the rectangle ABCD with AB =a, AD= {3. A 
line l passing through the centre 0 of the rectangle meets the side 
AD at the pointE such that AE/ED = 1/2. On this line take an 
arbitrary point M lying inside the rectangle. Find the necessary 
and sufficient condition on a and {3 so that distances from M to 
the sides of the rectangle AD, AB, DC and BC, taken in that 
order, form an arithmetic progression. 

The following is a combination of solutions by Lu Shangyi 
(National University of Singapore) , Calvin Lin {Hwachong Ju­
nior College), R.Pargeter (England} and Joel Tay (Anglo-Chinese 
School (Independent)). 

Let x, y, z, t be the respective distances from M to the sides 
AD, AB, CD, BC. If they form an arithmetic progression, then 
x + t = y + z and hence a = {3 which is a necessary condition. 

Now suppose that a = {3. Let (} = xfa. Note that 0 < (} < 
1. The distances in the question are x = 8a, y = ( (} + 1 )a/3, 
z = (2- 8)af3, t = (1- 8)a. These are obviously in arithmetic 
progression. Thus a = {3 is also sufficient. 

2. Find the prime number p so that 1 + p2 + p3 + p4 is a perfect 
square, i.e. the square of an integer. 

Similar solutions by Calvin Lin {Hwachong Junior College), 
Lu Shangyi (National University of Singapore) and Joel Tay {Anglo­
Chinese School (Independent)). 

Let f(n) = 1 + n2 + n3 + n4 • Indeed f(1) = 4 = 22 • We'll 
show that for all positive integer n > 1, f(n) is not a square. First 
note that 

(n2 + n -1)2 < 1 + n2 + n3 + n4 

# n4 + 2n3 
- n2 

- 2n + 1 < 1 + n2 + n3 + n4 

# n(n+ 1) > 0 

which is true when n > 0. Also 

1 +n2 +n3 +n4 < (n2 +n)2 

# 1 + n2 + n3 + n4 < n4 + 2n3 + n2 

# n3 > 1. 

Thus when n > 1, we have 



Thus /( n) is not a square when n > 1. 

3. Find the maximum positive real number k such that 

for all positive real numbers x and y. 

Similar solutions by Joel Tay (Anglo-Chinese School (Inde­
pendent}}, Lu Shangyi (National University of Singapore) and 
Calvin Lin (Hwachong Junior College). 

We have 

Thus 

Let x2 = a, y2 = b. Then 

Since the above inequality. must hold for all positive real numbers 
a, b, and 3a=tb > 2J3, we have k2 -4 < 2J3.Hence the maximum 

value of k satisfies k2 = 4 + 2vra or k = J2<2 + vra) = 1 + vra. 

4. For the subset At, ... , A2ooo of the set M, we have IAil > 
2IMI/3, i = 1, 2, ... , 2000, where lXI denotes the cardinality of 
the set X. Prove that there exists a E M which belongs to at 
least 1334 from the subsets Ai. 

Solution by Calvin Lin (Hwachong Junior College). 

Let M = {a1,a2, ... ,an}. Form the incidence matrix with 
the rows indexed by a 1, a2 , ••• , an and the columns indexed by 
Al,A2, ... ,A2000· The entry at (ai,Aj) is 1 if ai E Aj and is 0 
otherwise. We shall count the total number of ones in the matrix 
in two ways. Counting by the columns, the number of ones is at 
least 4000n/3. The average number of ones per row is 4000/3. 
Hence there is one row with r4000/3l = 1334 ones. This means 
that the corresponding element belongs to at least 1334 of the 
sets. 
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XII Asian Pacific Mathematical Olympiad 

March 2000 

1. Compute the sum 

for Xi= 1~1 . 

Solution by Joel Tay {Anglo-Chinese School {Independent)) 
and Lu Shangyi (National University of Singapore). 

Note that 

X~ i 3 . ---~~--------~~ 
1- 3xi + 3x~ - 101(3i2 - 303i + 1012 ) · 

Also if j = 101 - i, then 

3j2
- 303j + 1012 = 3i2

- 303i + 1012
• 

Thus 
x1 _ (101 - i)3 

1- 3xj + 3x~ - 101(3i2 - 303i + 1012 ) • 

Hence 
X~ X~ 

-----=-· -~ + J - 1 
1 - 3xi + 3x~ 1 - 3xj + 3x~ - · 

So the sum is 51. 

2. Given the following triangular arrangements of circles, each 
of the numbers 1, 2, ... , 9 is to be written into one of these circles, 
so that each circle contains exactly one of these numbers and 

(i) the sums of the four numbers on each side of the triangle are 
equal; 

(ii) the sums of the squares of the four numbers on each side of 
the triangles are equal. 

Find all ways in which this can be done. 

Official solution. 

Let s be the sum of the fours numbers on each side of the 
triangle and let S be the sum of the squares of the four numbers 
on each side of the triangle. Let x, y, z be the numbers in the 



corners of the triangle, with x < y < z. Finally, let a, b, a< b, be 
the two numbers on the same side as y, z. 

3s=45+x+y+z 

38 = 285 + x2 + y2 + z2 

Thus 
3 I x + y + z and 3 I x 2 + y2 + z2 

and it follows that x = y = z (mod 3). 

Case 1: x = 3,y = 6,z = 9: In this cases= 21 and S = 137. 
Thus 

a + b = 5 and a2 + b2 = 20. 

So there is no solution. 

Case 2: x = 1,y = 4,z = 7. In this cases= 19 and S = 117. 
Thus 

a + b = 8 and a2 + b2 = 52. 

So there is no solution. 

Case 3: x = 2,y = 5,z = 8. Then s = 20,8 = 126. In this 
cases= 21 and S = 137. Thus 

a+ b = 7 and a2 + b2 = 37. 

So a= 1,b = 6. 

By similar considerations, the numbers on the other sides can 
be found to be unique. The solution is shown in the picture. 

Thus there are 48 solutions since there 6 ways to place x, y, z 
at the corners and for each of these, there are 8 ways to place the 
remaining 6 numbers. 

3. Let ABC be a triangle. Let M and N be the points in which 
the median and the angle bisector, respectively, at A meet the 
side BC. Let Q and P be the points in which the perpendicular 
at N to N A meets M A and BA, respectively, and 0 the point in 
which the perpendicular at P to BA meets AN produced; 

Prove that QO is perpendicular to BC. 

Solutions by R. Pargeter (England) and Lu Shangyi (National 
University of Singapore). We first present the official solution. _ 

H LB = LC, the proof is obvious. So we suppose without 
loss of generality that LB < LC. Produce BA to C' so that 
AC' = AC. Then CC'IIAN. Let BH be the perpendicular from 
B onto C' C. Draw C P' parallel to H B, intersecting AN in L 
and AB in P'. Then AN produced bisects H H', at K say, where 

® 
0® 

® 
®CD 

CD 
®® 

~t.M-1)1~ 
~ 10~ ~ 
t- r ~ 

-~~~~================------------------------------ M E D L E Y 



C' 

H' E BH and P'H'IICC'. Draw the perpendicular MM' from M 
B onto AN produced. 

Since M is the midpoint of BC, 

M'M= KB-KH = KB-KH' = H'B 
2 2 2 ' 

AM'= AL+ L~ = C~H· 

HFrom similar triangles we have NQ : AN = M' M : AM' = H' B : 
C~H or NQ: H'B =AN: C'H = NP: HB. Therefore 

~--+__,..___,___--+......;;;:a.O 

c H 

NQ: NP= H'B: HB =CH: C'H. 

But 
NP: NO= AN: NP = C'H: HB. 

Therefore N Q : N 0 = C H : H B. Hence the right triangles 
0 N Q, C H B are similar, and since 0 N is perpendicular to H B, 
OQ must also be perpendicular to BC. 

Next is Lu 's solution using coordinate geometry. Pargeter 
also has a solution along this line. 

Let us set up a coordinate system. Let N be the origin, with 
N 0 as the x-axis and N P as the y-axis. Let the coordinates of 
P be {0, c) and the gradient of the line ABbe fflAB = m. Then 
the equation of the line AB is given by y = mx + c. Since AN is 
the angle bisector at A, we have the equation of the line AC to be 
y = -mx - c. Since BC passes through the origin, its equation is 
of the form y = ax. Then the coordinates of A, B and C are 

Since PO is perpendicular to AB, mpo = -1/m and the equation 
of PO is given by y = - ~ + c. Thus O(cm, 0). Since M is 
the midpoint of BC, its coordinates are given by M(mc/(a2 -

m2),amc/(a2 - m2)). Now MA intersects they-axis at Q~ Thus 
x = 0 and y = me/ a. Hence the coordinates of Q are given by 
Q(O,mc/a). Hence moQ = -1/a and moQmBc = -1 and hence 
OQ is perpendicular to BC. 

4. Let n, k be given positive integers with n > k. Prove that 

Solution. 



Let b = n- k. We are required to prove that 

We have 

Since (~)kkbb is one of the terms on the right, we have 

Next, for any j > 0, 

(~)kkbb (k + j)!(b- j)!~ 
(k~;)kk+ibb-j - k!b!ki 

(k + j)(k + j- 1) ... (k + 1) ~ 
= >1 

ki b(b- 1) ... (b- j- 1) 

(~)kkbb (k- j)!(b + j)!ki 
(k~j)kk-jbb+j = k!b!bi 

= (b + j)(b + j- 1) ... (b + 1) ki > 1 
bi k(k- 1) ... (k- j- 1) 

Since each term on the right is > (~) kk bb, we have 

5. Given a permutation (a0 , a1, ... , an) of the sequence 0, 1, ... , 
n. A transposition of ai with a; is called legal if i > 0, ~ = 0 and 
ai-l + 1 = a;. The permutation (ao, a1, ... , an) is called regular 
if after a number of legal transpositions it becomes (1, 2, ... , n, 0). 
For which numbers n is the permutation (1, n, n- 1, ... , 3, 2, 0) 
regular? 

Solution. 

Let Pn denote the permutation (1, n, n- 1, ... , 3, 2, 0). First 
we observe that Pn is trivially regular for n = 1, 2. Now consider 
the case n > 3. 

By a sequence of legal transpositions a, b, c, ... we mean 0 is 
legally transposed with a, then b, then c and so on. 

~~M.-i"~ 
~ 10~ () 

~ r t 
==================~---------------------------- M. B D L B Y 



If n is even, then after the sequence of legal transpositions 
3, 5, 7, ... , n-1, Pn will be transformed into a permutation where 
0 will be on the right of n and no further legal transposition is 
possible. For example 

(1, 8, 7, 6, 5, 4, 3, 2, 0) is transformed into (1, 8, 0, 6, 7, 4, 5, 2, 3). 

Thus n is not regular if n is even. 

So we assume that n is odd. We can write n = k2i -1, where 
k, j are positive integers. The sequence of legal transpositions 
3, p, ... , n transforms Pn into 

Qn = (1, 0, n- 1, n, n- 3, n- 2, ... , 2, 3). 

We shall encounter permutations like this frequently. So we intro­
duce the notation: 

1r(a, b) = [1, 2b- 1]0[a2b, (a+ 1)2b- 1] 

[(a- 1)2b, a2b- 1] ... [2.2b, 3.2b- 1][2b, 2.2b- 1] 

where for any two integers s < t, [s, t] = (s, s + 1, ... , t). Thus 
1r(a, b) is a permutation of n =(a+ 1)2b- 1. For example: 

11"(3, 2) = [1, 3]0[12, 15][8, 11][4, 7] 

= (1,2,3,0,12,13,14,15,8,9,10,11,4,5,6,7). 

Also 
Qn = 1r((n- 1)/2, 1) = 7r(k2j-l- 1, 1). 

If a = 2£ + 1 is odd, then 1r( a, b) can be transformed, by the legal 
transpositions 

2b ,3.2b, ... , a2b, 

2b + 1, 3.2b + 1, ... , a.2b + 1, 

into 

[1, 2b -1][2b, 2.2b- 1]0[(a ~ 1)2b, a2b -1][a2b, (a+ 1)2b- 1] 

... [2.2b, 3.2b - 1] [3.2b, 4.2b - 11 

. = [1, 2b+l - 1]0[l2b+l, (i + 1)2b+l - 1] ... [2b+l, 2.2b+l - 1] 

= 7r(l,b+ 1) 



Thus 7r{3, 2) is tranformed into 

7r{1, 3) = {1, 2, 3, 4, 5, 6, 7, 0, 8, 9, 10, 11, 12, 13, 14, 15). 

H a is even, then the legal transpositions 2b, 3.2b, ... , (a-1)2b 
transform 1r(a, b) into 

[1, 2b - 1]2b[a2b, (a+ 1)2b- 1]0[{a- 1)2b + 1, a2b -1] 
... 5.2b[3.2b + 1, 3.2b- 1] [2.2b' 3.2b- 1]3.2b[2b + 1, 2.2b- 1]. 

From this no further legal transposition is possible since 0 is now 
on the right of n =(a+ 1)2b- 1. 

H n = k2j - 1, then Pn can be transformed into Qn = 
1r{k2j-l - 1, 1). From this it can be transformed into 1r{k2j-2 -

1, 2), ... , 1r(k- 1, j). 

H k = 1, 1r{O, 1) = [1, n]. H k > 1, then k- 1 is even, and we 
know that 1r(k- 1,j) cannot be legally transformed to [1, n]. 

Thus the only n which are regular are those that can be 
written in the form n = 2j - 1. 

~f;M-1)>~ 
~ 10?) ~ 
t- r ~ 
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