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27. The Stirling Numbers of the Second Kind 

In Section 25 (see [3]), we introduced the Stirling number of the first kind s(m,k) that is 

defined as the coefficient of xt in the expansion of 

[x]m =x(x-l)···(x-m+l); 

namely, 

m 

[x]m = L s(m,i)xi. 
i=O 

(27.1) 

The sequence of numbers s(m,l), s(m,2), · · ·, s(m, m) alternate in sign with s(m,l) positive when 

and only when m is odd. 

In Section 26 (see also [3]), we gave a combinatorial interpretation of s(m,k); that is, 

the absolute value of s(m, k) is the number of ways of arranging m distinct objects around k 
identical circles with at least one object at each circle. 

•. 
In this section, we shall introduce the other sequence of Stirling numbers, called the 

Stirling numbers of the second kind. 

Let us begin with a simple example. Consider 4 distinct objects: a, b, c and d. Clearly, 
there is one and only one way to group them into '1' group, that is, {a,b,c,d}; and there is one 

and only one way to divide them into 'four' groups, that is, 

{a} u{b}u{c}u{d}. 

Now, (i) how many ways are there to divide them into 'two' groups? 

There are 7 ways as shown below: 

{a,b,c}u{d}, {a,b,d}u{c}, {a,c,d}u{b}, 

{b,c,d}u{a}, {a,b}u{c,d}, {a,c}u{b,d}, 

{a,d}u{b,c}. 

(ii) How many ways are there to divide them into 'three' groups? 

There are 6 ways as shown below: 

{a,b}u{c}u{d}, {a,c}u{b}u{d}, {a,d}u{b}u{c}, 

{b,c}u{a}u{d}, {b,d}u{a}u{c}, {c,d}u{a}u{b}. 
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Given two positive integers n and k with k $ n, the Stirling number of the second kind, denoted 

by S(n,k), is defined as the number of ways of dividing n distinct objects into k (nonempty) 
groups; that is, the number of ways of partitioning an n-element set into k nonempty subsets. 
Thus, as shown in the above example, we have 

S(4,1) = 1, S(4,2) = 7, S(4,3) = 6, S(4,4) = 1. 

Problem 27.1. Find the value of S(5,k), where k = 1,2,3,4,5. 

Example 27.1. Find the number of ways to express 2730 as a product ab of two numbers a and 
b, where a > b ~ 2. 

Observe that 2730 = 2 · 3 · 5 · 7 ·13, and such a pair a, b of factors is obtained by dividing 

{2,3,5, 7,13} into 2 groups (and then taking their products). Thus, the desired number of ways 

is given by S(5,2)(= 15). 0 

Problem 27.2. Find, in terms of S(n,k), the number of ways to express 39270 as a product abc 

of three integers a, b and c, where a > b > c ~ 2. 

Problem 27 .3. It is clear that 
(i) S(n,1) = S(n,n) = 1, 

(ii) S(n,k) = 0 if k > n ~ 1, and 

(iii) S(n,O) = S(O,k) = 0 if n ~ 1 and k ~ 1. 

We define 
(iv) S(O,O) = 1. 

Show that for n ~ 1, 

(v) S(n,2) = 2n-l -1, 

(vi) S(n,n-1)=(;} 

28. The Number of Onto Mappings 

We pointed out in Section 19 (see [1]) that the problem of counting the number of onto 
mappings from a finite set to another finite set is not straight forward, and we showed by an 
example how to tackle this problem by applying (PIE). In this section, we shall point out that 
this counting problem is actually closely related to the problem of evaluating the S(n, k )' s. 

Consider an onto mapping from {a,b,c,d} to {1,2,3}, say, 

a ·= >-· I 
b • 

~· 2 c ·-
d ~· 3 ·-
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This onto mapping can be regarded as first dividing the 4 elements a, b, c, d into 3 groups: 
{a,b}, {c}, {d}, and then naming the groups as '1 ', '2' and '3' respectively. If we rename the 
groups as '2', '3' and '1' respectively, then we get another onto mapping: 

a ·= ... 2 b • 
~· 3 c ·-

d ~· 1 ·-
Since there are 3! ways to name the 3 groups, we see that a way of dividing 4 distinct objects 
into 3 groups gives rise to 3! onto mappings from {a,b,c,d}to {1,2,3}. It thus follows that the 

number of onto mappings from{a,b,c,d}to{1,2,3} is given by 3! S(4,3)(= 36). 

In general, we have: 

The number of onto mappings from an n-element set to a k­
element set is given by 

k!S(n,k). (28.1) 

Problem 28.1. In Example 19.1 (see [1]), we applied (PIE) to compute the number of onto 
mappings from a 5-element set to a 3-element set, which is '150'. Verify this result by applying 
(28.1) and your answer of S(5,3) in Problem 27.1. 

Using the general statement of (PIE) as shown in Section 20 (see [2]), one can show that 
(see Problem 22.3 in [2]) the number of onto mappings from an n-element set to a k-element set 
is given by 

± (-1)'[k) (k- rr. 
r=O r 

Combining this with (28.1), we have: 

S(n,k)=~ I (-1)'[k) (k-rY. 
k. r=O r 

(28.2) 

29. A Recurrence Relation 
The formula (28.2) provides us with a way to evaluate S (n, k )' s. There is another way to do so. 

As shown in Section 25 (see [3]), the Stirling numbers of the first kind s(m, k )' s satisfy the 
following recurrence relation: 

s(m,k) = s(m -1,k -1)-(m -1) s(m -1,k). 
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For the Stirling numbers of the second kind, likewise, we have the following recurrence 
relation: 

For positive integers n, k with n ~ k, 

S(n,k) = S(n -1,k -1)+ k S(n -1,k). (29.1) 

To see why (29.1) holds, suppose a1 ,a2 , ••• ,an are then distinct objects which are divided into k 

groups. Consider a particular object, say, 'a1 '. 

Case 1. 'a1 ' itself forms a group. 

In this case, the n -1 objects a2 , ••• ,an are then divided into k -1 groups. By definition, 

there are S (n -1, k -1) ways of grouping. 

Case 2. a1 is in a group with at least 1 other object. 

In this case, the n -1 distinct objects a2 , ••• ,an are divided into k groups and there are 

S (n -1, k) ways of grouping. In any such grouping, a1 has k choices to be in one of the k 

groups. Thus, there are k S(n -1, k) ways in this case. 

The relation (29.1) now follows by (AP). D 

Using the initial values shown in Problem 27.3 and applying (29.1), one can find out the 
values of other S (n, k )' s. For instance, 

etc. 

S(3, 2) = S(2,1)+ 2S(2,2) =1 + 2 ·1=3; 

S(4,2) = S(3,1)+2S(3,2)=1+2·3=7; 

S(4,3) = S(3,2)+3S(3,3)= 3+3 ·1= 6; 

It is in this way that one can easily construct the following table of the values of 
S(n,k)'s. 

r"( 0 8 9 
0 1 
l 0 1 
2 0 1 1 
3 0 1 3 1 
4 0 1 7 6 1 
5 0 1 15 25 10 1 
6 0 1 31 90 65 15 1 
7 0 1 63 301 350 140 21 1 
8 0 1 127 966 1701 1050 266 28 1 
9 0 1 255 3025 7770 6951 2646 462 36 1 

Table 29.1. The values of S(n,k)'s 



Problem 29.1. Show that for any positive integers nand k with n ~ k, 

S(n,k)= L S(r,k-1). n-1 (n-1) 
r=O r 

30. Expressing xn in terms of [x]. 's 
l 

As shown in (27.1), when [x] is expressed in terms of xi Is, the Stirling numbers of the first 
m 

kind are the coefficients. Suppose, conversely, we wish to express xn in terms of [x]; 1 s. What 

can be said about the coefficients? To answer this question, let us consider the following 
counting problem: 

Let Nn = {1,2,· ··,n}. Determine a, the number of mappings from Nn to Nk. 

We shall now use two different methods to count a. The first method is the 'natural' 
one: 

a=k···k=e. 
~ 

n 

(30.1) 

The second method is a 'stupid' one. According to the size I f(Nn) I of the image of a mapping 

f : N n --7 N k , the set of mappings from N n to N k can be partitioned into k groups 

Aj, i = 1, · ··, k, where ~consists of those mappings whose images have exactly i elements, i.e., 

What is the value of I~ I? Well, I Ai I counts the number of onto mappings from Nn to an 

i-element subset of N k. There are ( ~) ways to choose an i-element subset of N k , and the 

number of onto mappings fromNn to this chosen i-element subset is i!S(n,i) by (28.1). Thus 

Now, by (AP), we have 

I~ I= ( ~ }!s(n,i) 

=k(k-l)···(k-i+l) S(n,i) 

=[k]i S(n,i). 

-rt 
(/) 
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a=L, lA; I 
i=l 

k 

= L [kl S(n,i) 
i=l 

n 

= L [kl S(n,i) ([kl =Oif i;?:k+1). 
i=l 

Comparing this result with (30.1) both count for a, we have: 

k" =! [kl S(n,i) . 
i=l 

If we replace 'k' by a real variable 'x', we then obtain: 

I x" = ~ S(n,i)[x],. (30.2) 

Thus we see that when x" is expressed in terms of [xl' s, the Stirling numbers of the second 

kind are the coefficients. 

For instance, when n = 4, 
4 

L S(4,i)[x]i =S(4,1)[x]1 +S(4,2)[x] 2 +S(4,3)[xh +S(4,4)[x]4 
i=l 

=1x+7x(x-1)+ 6x(x -1)(x- 2)+ 1x(x-1)(x- 2)(x- 3) 

=x+7x2 -7x+6x3 -18x2 +12x+ x4 -6x 3 + llx2 -6x 

=x4. 

Answers to problems 

Problem27.1. S(5,1)=1, S(5,2)=15, S(5,3)=25, S(5,4)=10, S(5,5)=1. 

Problem 27.2. S(6,3). (Observe that 39270 = 2 · 3 · 5 · 7 ·11·17) 
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