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n this issue we publish the problems of the First Hong Kong 

(China) Mathematical Olympiad Contest 1999, Greek National 

Mathematical Olympiad 2000, and XII Asian Pacific 

Mathematical Olympiad, March 2000. 

Please send your solutions of these Olympiads to the address given 

above. All correct solutions will be acknowledged. We also present 

solutions of the 12th Nordic Mathematical Contest 1998, the 1st 

Japan Mathematical Olympiad 1991, the Georgian Mathematical 

Olympiad 1997 and the 40th International Mathematical Olympiad 

1999. 
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I I 
First Hong Kong (China) Mathematical Olympiad 

1999 

1. PQRS is a cyclic quadrilateral with LPSR = 90°; H, K 
are the feet of the perpendiculars from Q to PR, PS (suitably 
extended if necessary), respectively. Show that H K bisects QS. 

2. The base of a pyramid is a convex polygon with 9 sides. 
Each of the diagonals of the base and each of the edges on the 
lateral surface of the pyramid is coloured either black or white. 
Both colours are used. (Note that the sides of the base are not 
coloured.) Prove that there are three segments coloured the same 
colour which form a triangle. 

3. Lets, t be given nonzero integers, and let (x, y) be any ordered 
pair of integers. A move changes (x, y) to (x + t, y- s). The pair 
( x, y) is good if after some (may be zero) number of moves it 
describes a pair of integers that are not relatively prime. 

(a) Determine if ( s, t) is a good pair. 

(b) Show that for any s and t there is pair ( x, y) which is 
not good. 

4. Let f be a function defined on the positive reals with the 
following properties: 

(1) /(1) = 1, 

(2) f(x + 1) = xf(x), 

(3) f(x) = 1Qg(x), where g(x) is a function defined on the reals 
satisfying 

g(ty + (1- t)z)) < tg(y) + (1- t)g(z) 

for all y and z and for 0 < t < 1. 

(a) Prove that 

t[g(n)- g(n- 1)] < g(n + t)- g(n) < t[g(n + 1)- g(n)] 

where n is an integer and 0 < t < 1. 

(b) Prove that ~ < f(~) < ~y'2. 



Greek National Mathematical Olympiad 2000 

1. Consider the rectangle ABCD with AB = a, AD = (3. A 
line f passing through the centre 0 of the rectangle meets the side 
AD at the point E such that AE /ED = 1/2. On this line take an 
arbitrary point M lying inside the rectangle. Find the necessary 
and sufficient condition on a and f3 so that distances from M to 
the sides of the rectangle AD, AB, DC and BC, taken in that 
order, form an arithmetic progression. 

2. Find the prime number p so that 1 + p2 + p3 + p4 is a perfect 
square, i.e. the square of an integer. 

3. Find the maximum positive real number k such that 

for all positive real numbers x and y. 

4. For the subset A1, ... , A2ooo of the set M, we have IAil > 
2IMI/3, i = 1, 2, ... , 2000, where lXI denotes the cardinality of 
the set X. Prove that there exists a E M which belongs to at 
least 1334 from the subsets Ai. 

XII Asian Pacific Mathematical Olympiad 

March 2000 

1. Compute the sum 

101 3 
S-"'"' xi . 

- ~ 1 - 3xi + 3xr 

for Xi = 1~ 1 . 

2. Given the following triangular arrangements of circles: 

Each of the numbers 1, 2, ... , 9 is to be written into one of 
these circles, so that each circle contains exactly one of these num­
bers and 

(i) the sums of the four numbers on each side of the triangle are 
equal; 

( ii) the sums of the squares of the four numbers on each side of 
the triangles are equal. 

Find all ways in which this can be done. 
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3. Let ABC be a triangle. Let M and N be the points in which 
the median and the angle bisector, respectively, at A meet the 
side BC. Let Q and P be the points in which the perpendicular 
at N to N A meets M A and BA, respectively, and 0 the point in 
which the perpendicular at P to BA meets AN produced. 

Prove that QO is perpendicular to BC. 

4. Let n, k be given positive integers with n > k. Prove that 

1 nn n! nn 
-- . < < --:--------:-
n + 1 kk(n- k)n-k k!(n- k)! kk(n- k)n-k · 

5. Given a permutation (a0 , a 1 , ... , an) of the sequence 0, 1, ... , 
n. A transposition of ai with aj is called legal if i > 0, ai = 0 and 
ai-l + 1 = aj. The permutation (ao, a17 ... , an) is called regular 
if after a number of legal transpositions it becomes (1, 2, ... , n, 0). 
For which numbers n is the permutation (1, n, n- 1, ... , 3, 2, 0) 
regular? 

South African Mathematical Olympiad, 1999 

Third round 

1. How many non-congruent triangles with integer sides and 
perimeter 1999 can be constructed? 

We present the solution by Calvin Lin Zhiwei (Hwachong Junior 
College). Also solved by Lim Chong Jie {Singapore). 

Let a, b, c be the lengths of the sides of the triangle with a 
the smallest among the three. We are looking for the solutions in 
positive integers solutions of the following: 

a+ b + c = 1999, a+ b > c, a + c > b. 

Thus 3a <a+ b + c = 1999, and we have a< 666. Also the two 
inequalities imply that b, c < 999. 

Thus when 1 < a < 500, we have the following solutions: 

(a, b, c)= (a, 1000- a+ k, 999- k), 0 < k <a- 1. 



For 501 <a< 666, we have the following solutions: 

(a, b, c)= (501 + m, 501 + m + k, 1999- 1002- k), 

where 0 < m < 666, and 0 < k < 496- 3m since 1999-1002- k > 
501 + m. Thus the total number of solutions is: 

1 + 2 + ... + 500 + 497 + 494 + ... + 2 = 166667. 

Since each scalene triangle contributes two solutions and each 
isosceles triangle contributes one solution and isosceles triangles 
occur only when a is odd, the number of noncongruent triangles 
18 

166667 + 333 - 83500 
2 - . 

2. A, B, C and D are points on a given straight line, in that 
order. Construct a square PQ RS, with all of P, Q, R and S on 
the same side of AD, such that A, B, C and D lie on PQ, S R, Q R 
and P S produced, respectively. 

We present the solution by Nicholas Tham Ming Qiang {Raffles 
Junior College). Also solved by Gary Yeh Yuan Long (Anglo­
Chinese Junior College). 

Let LADP = 8. Then SR = ABcos8 and QR = CDsin8. 
Thus tan 8 = AB /CD. Thus the construction can be done as 
follows: 

1. Construct the segment BE perpendicular to AB such that 
BE= CD. (LAEB = 8.) 

2. Construct the line l parallel to AE passing through B. 

3. Construct the lines m, n perpendicular to AE and passing 
through C, D, respectively. 

4. The pairwise intersections of the lines AE, l, m, n give the 
vertices of the square. 

3. The bisectors of angle BAD in the parallelogram ABCD 
intersects the lines BC and CD at the point K and L, respectively. 
Prove that the centre of the circle passing through the points C, K 
and L lies on the circle passing through the points B, C and D. 

We present the solution by A. Robert Pargeter {England}. 

Let 0 be the centre of the circumcircle of LC K (so that 0 L = 
OC =OK). Denote LDAB by 2a. Then LLKC = LDAL =a. 
Therefore LLOC = 2LLKC = 2a, LDLA = LLAB = a. Let 
LOCL = 8. Then LDLO = 2a + 8 = LOCB. Thus trian­
gles DLO and BCO are congruent. Therefore LODC = LOBC, 
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4. The sequence £ 1 , £ 2 , L 3 , ... is defined by 

L1 = 1, L2 = 3, Ln = Ln-1 + Ln-2 for n > 2, 

so the first six terms are 1, 3, 4, 7, 11, 18. Prove that Lp - 1 is 
divisible by p if p is prime. 

We present the solution by Charmaine Sia Jia Min{Rajjles Girls' 
School). Also solved by Ernest Chong (Raffles Institution). 

First we note that the result holds for p = 2. Henceforth, we 
assume that p > 3. The characteristic equation for the recurrence 
is x2 - x - 1 = 0 whose solution is a = (1 + J5)/2 and b = 
(1-J5)/2. Thus Ln = Aan+Bbn. By considering L1 = 1, L2 = 3, 
we get A = B = 1. Thus 

Lp = ( 1+2 v'5r + c ~2 v'5r 
=? 2P-1Lp = 1 + (~)5+ (~)52 +···+~ p 1)5(p-t)/2 

= 1 (mod p) 

since (;) = 0 (mod p) for 1 < i < p- 1. By Fermat's Little 
Theorem, 2P-l = 1 (mod p) for p > 3. Thus Lp = 1 (mod p) 
as required. 

6. You are at a point (a, b) and need to reach another point 
( c, d). Both points are below the line x = y and have integer 
coordinates. You can move in steps of length 1, either upwards or 
to the right, but you may not move to a point on the line x = y. 
How many different paths are there? 

We present the solution by Calvin Lin Zhiwei (Hwachong Junior 
College). 

Clearly, a< c, and b < d, otherwise no paths exist. 

We now consider two cases. If a < d, then there is no restric­
tion and the number of paths is (c-~~~-b). 

Now suppose a> d. A path is good if it does not touch the 
line x = y. Otherwise it is bad. The total number of paths, good 
or bad, is (c-~~~-b). Reflect the rectangle grid with corners at 
(a, b), (c, d) in the line x = y. There is a one to one correspon­
dence between bad paths and paths from (b, a) to (c, d). The total 
number of such paths is (c-~~~-a). Thus the total number of good 

paths is (c-~~~-b) - (c-~~~-b). (Note that the second term is 0 



if a < d. Thus the two cases can actually be combined. In fact 
under this condition, there is no path from (b, a) to (c, d).) 

Austrian-Polish Mathematics Competition 

1998 

1. Let XI, x2, YI, Y2 be real numbers such that x~ + x~ < 1. Prove 
the inequality 

We present the solution by Nicholas Tham Ming Qiang {Raffles 
Junior College) and Gary Yeh Yuan Long {Anglo-Chinese Junior 
College). 

If y~ + y~ > 1, then the result is obvious as the righthand 
side is negative. So consider the case where y~ + y~ < 1. Let 
XI = k sin a, x2 = k cos a, YI = j sin /3, and Y2 = j cos f3 where 
k, j > 0. Then it suffices to prove that 

This is equivalent to 

which is obviously true. 

2. Consider n points P1, P2 , •.. , Pn lying in that order on a 
straight line. We colour each point in white, red, green, blue or 
violet. A colouring is admissible if for each two consecutive points 
Pi, Pi+ I ( i = 1, 2, ... , n -1) either both points are the same colour, 
or at least one of them is white. How many admissible colourings 
are there? 

Solution by Joel Tay Wei En {Anglo-Chinese School (Indepen­
dent)). 

Let the number of colourings be Cn. Consider the first point. 
If it is white then there are Cn-I admissible colourings. If it is not 
white then it could be one of 4 colours. Now consider the second 
point. It is either white, in which case there are Cn_ 2 colourings, 
or the same colour as the first point. Now consider the third point 
etc., we end up with the recurrence 



Replace n by n - 1 we have 

From these we get the recurrence 

The characteristic equation is x2 - 2x - 3 = 0, with distinct roots 
X= 3, -1. Thus Cn = p3n + q(-1)n. But cl = 3p- q = 1 and 
C2 = 9p + q = 13. Solving for p and q, we get p = 7/6, q = 5/2. 
Therefore the solution is Cn = (7/6)(3n) + (5/2)(-1n) 

3. Find all pairs of real numbers (x, y) satisfying the equations 

2- x3 = y, 2- y3 = x. 

We present the solution by Calvin Lin Zhiwei {Hwachong Junior 
College). 

The graphs of the two equations are symmetric about the 
line x = y. Thus they intersect only on the line x = y. Since 
2- x3 = x implies (x- 1)(x2 + x + 2) = 0. But the second factor 
is always positive. Thus x = y = 1 is the only solution. 

4. Let m, n be positive integers. Prove that 

n 

Ll k~J < n+m(2m/4 -1). 
k=l 

We present the solution by Nicholas Tham Ming Qiang {Raffles 
Junior College). Also solved by Gary Yeh Yuan Long (Anglo­
Chinese Junior College). 

First we prove that fork> 2, Lkm/k
2J > L(k+ 1)m/(k+1)

2J. 
This follows from the fact that if f(x) = x 1fx, then f'(x) = 
f(x)(1 -lnx)/x2 < 0 if x > 3. 

When k > m, we have 

k < 2k ===> k < 2(kjm)k ===> km < 2k2 ===> k~ < 2. 

Thus l k~J = 1. So there are at most m- 1 terms in the 
summand which is greater than 1. Let i be the number of such 
terms the largest of which is b = l ~J. Then 

n 

Ll k~J < (n- i) + ib < n + m(2m/4 - 1). 
k=l 



5. Find all pairs (a, b) of positive integers such that the equation 

has three integer roots (not necessarily distinct). 

We present the combined solution by Calvin Lin Zhiwei (Hwa­
chong Junior College) and Lim Chong Jie (Singapore). 

Let a, {3, 'Y be the three integer roots. Since the left hand side 
of the equation is negative for x < 0, we conclude a, {3, 'Y are all 
positive. We have 

The following are the solutions to the first and third equation 
(here we assume without loss of generality that a < j3 < 'Y): 

(a,J3,"f) = (1,8,8),(2,5,10),(3,6,8),(4,4,9). 

From these we have 

(a, b) = (80, 8), (80, 10), (88, 12), (90, 12). 

6. Distinct points A, B, C, D, E, F lie on a circle in that order. 
The tangents to the circle at the points A and D, and the lines 
BF and CE are concurrent. Prove that the lines AD, BC, EF 
are either parallel or concurrent. 

We present the solution by A. Robert Pargeter (England). 

This is a very simple exercise in projective geometry-sadly 
little taught and studied nowadays! 

Let BF,CE, etc, meet at G. Let BG,CG meet AD at P,Q, 
respectively. Let BC meet AD at R. (If BCIIAD then R is the 
point at infinity on AD). Let RE meet BG at S. 

Since AD is the polar of G, BPFG and CQEG are harmonic 
ranges: in brief notation 

{BPFG} = {CQEG} = -1. 

Projecting from R, 

{BPSG} = {CQEG} = -1. 

Therefore {BPFG} = {BPSG} and hence F and S coincide. 
Since the proof is strictly projective (i.e., nonmetrical), the circle 
can replaced by any nondegenerate conic (as in my diagram). 

G 

R 
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R 

For those not familiar with projective geometry, we present the 
following solutions. 

First we note that when FE is parallel to BC, then they are 
parallel to AD and the result holds. Thus we assume that BC is 
not parallel to FE. 

Let BF, CE meet at G. Let BG, CG meet AD at P, Q, re­
spectively. We'll prove that QE/QC = GE/GC and PF/PB = 
GF/GB. (Note: This is equivalent to 

{CDEG} = -1 and {BDFG} = -1 

in Pargeter's solution.) 

Since 6GAC ~ 6GEA, we have GE/EA = GA/AC. Also 
6GDC ~ 6GED. Thus DC/GC = ED/GD. These imply that 
GE/GC = EA · ED/CA ·CD. 

By considering 6QAC ~ 6QED and 6QCD ~ QAE, we 
have QS/QC = EA · ED/CA ·CD and QE/QC = GE/GC as 
desired. Similarly, we have P F I P B = G FIG B. 

Let BC meet FE at Rand BE meet CF at X and RX meet 
CE at Q' and BF at P'. We'll prove that Q' EIQ'C = GEIGC 
and P'F/P'B = GF/GB. These will prove that P' = P and 
Q' = Q and the result will follow. 

Apply both Ceva's and Menelaus' Theorem to D.CER and 
we'll obtain the first equality. Do the same to 6BF R and we'll 
get the second equality. 

Third solution: Let r denote the circle. Further let BF and CE 
meet at G and BC meet FE at R. Let K be the point on the line 
RG such that G, E, F, K are concyclic. (Note that K is on the 
segment RG.) Call the circle r 1. Then C, E, K, Rare concyclic. 
Call this circle r 2 . Since R is on the radical axis of r and r 1 , we 
have 

RC·RB=RK·RG. 

Since G is on the radical axis of r and r 2 , we have 

GD2 =GK·GR. 

Summing up we have 

RC·RB+GD2 =GR2
, i.e., RC·RB=GR2 -GD2

• 

r 1 Let r 3 be the circle with centre G and radius GD. Then the left 
hand side is the power of R with respect tor while the right hand 
side is its power with respect to r 3 . Therefore Rison AD, the 
radical aXis of the two circles. 



7. Consider all pairs (a, b) of natural numbers such that the 
product aabb, written in base 10, ends with exactly 98 zeroes. 
Find the pair (a, b) for which the product ab is smallest. 

We present the solution by Nicholas Tham Ming Qiang (Raffles 
Junior College). 

Let (x)i denote the largest integer k such that ik I x. Thus 

Now suppose 5 I a, and 5 I b. Then (aabb)s = a(a)s + b(b)s. Thus 
5 I (aabb)s. Similarly 5 I (aabb)2. This violates(*) and so this case 
is impossible. Thus we assume without loss of generality that 5 f a 
and 5 I b. (Note that 5 I ab.) 

Suppose (b) 5 = 1. Since (aabb) 5 = (bb) 5 > 98, we have b > 98. 
If 2 I b, then we have (aabb)2 > (bb)2 > 98. This again violates 
( *). Thus in this case, b must be odd the minimum such b is 
105. Also (aabb)2 = (aa)2 = 98. This implies that a = 98. Thus 
(a,b) = (98,105). 

Suppose (b)s = 2. Then (aabb)s = (bb)s = 2b > 98. Thus 
b = 50,75 or > 98. Consider the case b > 98. If (b)2 > 0, 
then (aabb)2 > (bb)2 > b > 98 which violates (*). If (b)2 = 0, 
then (aabbh = a(a)2 = 98. This implies a = 98 and yields the 
minimum solution (a, b) = (98, 125). But this is larger than the 
previous solution and is discarded. 

Forb= 50, there is no solution. Forb= 75, we get a= 98. 
This is the best solution so far. 

The final case is (b) 5 > 2. For this we get b > 125 and a= 98. 
This is again too large. Thus the solution is (a, b) = (98, 75). 

8. Let n > 2 be a given natural number. In each unit square of an 
infinite grid is written a natural number. A polygon is admissible 
if it has area n and its sides lie on the grid lines. The sum of 
the numbers written in the squares contained in an admissible 
polygon is called the value of the polygon. Prove that if the values 
of any two congruent admissible polygons are equal, then all of 
the numbers written in the squares of the grid are equal. 

We present the solution by Calvin Lin Zhiwei (Hwachong Junior 
College). and Lim Chong Jie (Singapore). 

Consider any 2 x 2 grid with the numbers a, b, c, d written in 
its unit squares (see figure). Then we have a+ c + d = b + c +d. 
Thus a= b. Hence every two adjacent unit squares carry the same 
number. Thus all the squares carry the same number. 

(Consider any horizontal strip of n - 1 unit squares. Since 
any unit adjacent to this strip will form an admissible polygon and 

~~M<i)l 
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since the value of all admissible polygons are equal, we conclude 
that any two adjacent squares carry the same number. Thus all 
squares carry the same number.) 

9. Let K, L, M be the midpoints of sides BC, CA, AB, respec­
tively, of triangle ABC. The points A, B, C divide the circumcir­
cle of ABC into three arcs AB, BC, CA. Let X be the midpoint 
of the arc BC not containing A, let Y be the midpoint of the arc 
C A not containing B and let Z be the midpoint of the arc AB not 
containing C. Let R be the circumradius and r be the inradius of 
ABC. Prove that 

r+KX +LY +MZ = 2R. 

We present the solution by A. Robert Pargeter {England). 

From the figure it is obvious that K X = R- R cos A, etc. So 
we need to prove 

~-....._ _ ___.X 

r+ 3R- RL:cosA = 2R, i.e., L:cosA = 1 + ~ 

where the summation is over the angles of triangle ABC. Now 

and using r = ~/ s and R = abc/ 4~, where s is the semi perimeter 
and~ the area of 6ABC, we get 

where 

r 4~2 

1+-=1+-
R sabc 

= 1 + 4(s- 1)(s- b)(s- c) 
abc 

= 
1

+ (b+c-a)(c+a-b)(a+b-c) = __!!__ 
2abc 2abc 

X = 2abc + (b + c - a) ( c + a - b) (a + b - c) 

= c2a + c2b- c3 
- a3 + ab3 + a2b- b3 + ca2 + cb2 

= L(ab2 + ac2
- a3

) 

Therefore 
X r · 

2abc = 1 + R = L cos A 

as required. 



49th Romania Mathematical Olympiad 1998 

Selected problems from the final round 

1. (7th form) Let n be a positive integer and Xt, x2, ... , Xn be 
integers such that 

Show that 

(a) Xi > 0 for i = 1, 2, ... , n. 

(b) x1 + x2 + ... + Xn + n + 1 is not a perfect square. 

We present the solution by Kiah Han Mao {Singapore). Also 
solved Lim Yin {Singapore). 

(a) By completing squares, we have 

xi+···+ x~ + n3 < (2n- 1)(xl + · · · + Xn) + n2 

=> (xi- 2x1n + n2
) + · · · + (x~- 2xnn + n2

) 

< (n- x1) + .. · + (n- Xn) 

=> (x1 - n)(x1 - n + 1) + · · · + (xn- n)(xn- n + 1) < 0. 

Since (xi -n)(xi -n-1) > 0, with equality when Xi = n, n-1, the 
original inequality holds only when Xi = n or n - 1, i = 1, ... , n. 

(b) LetS= x1 +x2 + ... +xn +n+ 1. Then 

Thus S cannot be a square. 

2. (7th form) Show that there is no positive integer n such that 
n + k 2 is a perfect square for at least n positive integer values of 
k. 

We present the solution by Julius Poh Wei Quan {Raffles Junior 
College). Also solved by Lim Chong Jie and Lim Yin {Singapore). 

Suppose n + k2 is a square, then n + k2 > (k + 1)2 . Thus 
k < (n- 1)/2 and there are at most (n- 1)/2 values of k such 
that n + k 2 is a square. 

3. (7th form) In the exterior of the triangle ABC with LB > 45°, 
LC > 45°, one constructs· the right isosceles triangles ACM and 
ABN such that LOAM= LEAN= goo and, in the interior of 
ABC, the right isosceles triangle BC P with LP = goo. Show 
that M N P is a right isosceles triangle. 
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B X c 

We present the solution by Lim Yin {Singapore). Also solved by 
Kiah Han Mao {Singapore). 

Let X be the midpoint of BC. We have 

(1) NB = AB/ cos45° = J2AB. 

(2) BP = BX/ cos45° = J2BX. 

(3) LNBP = LNBA + LABP = 45° + LABP = LABX. 

(4) From (1), (2) and (3), we have 6.NBP"' 6.ABX. Simi-
larly, 6.M C P "' 6.AC X. 

(5) Thus LMPC+LNPB = LAXC+LAXB = 180°. Hence 
LMPN=90°. 

(6) From (4), we have NP/AX = NB/AB = J2, MP/AX = 
MC/AC = J2. Thus NP = MP. This together with (5) yields 
that result that 6.M N P is right-angled and isosceles. 

4. (9th Form) Find integers a, b, c such that the polynomial 
f(x) = ax2 + bx + c satisfies the equalities: 

f(f(1)) = f(f(2)) = f(f(3)). 

We present the solution by Julius Poh Wei Quan {Raffles Junior 
College). Also solved by Calvin Lin Zhiwei {Hwachong Junior 
College) and Lim Chong Jie {Singapore). 

Since f(x) is a polynomial of degree at most 2, for each k, 
there are at most two values of x such that f(x) = k. Thus we 
have the following cases: 

(1) f(1) = !(2): Then a+ b + c = 4a + 2b + c which implies 
b = -3a. Thus f ( x) = ax2 - 3ax + c and its graph is symmetrical 
about the line x = 3/2. Now, f(1) = f(2) = -2a+c and f(3) = c. 
If c = - 2a + c, we have a = b = 0 and c E Z. If c =I - 2a + c, then 
( -2a + c +c) = 3 since f( -2a +c) = f(c). But this is impossible 
as a and care integers. 

(2) !(2) = f(3): This is similar to (1) and has the same 
solution a = b = 0 and c E Z. 

(3) f(1) = !(3): Then a+ b + c = 9a + 3b + c and b = -4a. 
So 

f(x) = ax2
- 4ax + c = a(x- 2)2

- 4 + c 

and its graph is symmetrical about x = 2. Since f(1) = -3a + c 
and f(2) = -4a + c, we have either ( -3a + c) = ( -4a + c) or 
( -3a + c) + ( -4a + c) = 4. The former gives the same solution as 
in (1). The latter yields a= 2p, p E Z, b = -8p and c = 2 + 7p. 

Thus the solutions are (a, b, c) = (0, O,p), or (2p, -8p, 2 + 7p), 
pE Z. 



5. (9th Form) Let ABCD be a cyclic quadrilateral. Prove that 

lAC- BDI < lAB- CD!. 

When does equality hold? 

We present the solution by Kiah Han Mao {Singapore). 

Let E and F be the midpoints of the diagonals AC and B D. 
In every quadrilateral, we have 

AC2 + BD2 + 4EF2 = AB2 + BC2 + CD2 + DA2
. 

(This result can be proved easily by using coordinates.) Since 
ABC D is cyclic, by Ptolemy's Theorem, we have 

AB ·CD+ AD· BC = AC · BD. 

Hence 

(AC- BD) 2 + 4EF2 = (AB- CD)2 +(AD- BC)2
. 

The desired inequality would then follow if 4EF2 >(AD- BC)2 . 

Let M be the midpoint of AB. In ll.MEF we have MF = AD/2, 
ME = BC /2 and from the triangle inequality, we have EF > 
!ME-MF!. Hence 2EF > IBC-ADI and 4EF2 > (BC-AD) 2 

as desired. 

Equality holds if and only if the points M, E, Fare collinear, 
which happens if and only if ABIICD, i.e., ABCD is an isosceles 
trapezoid with AB = CD. 

6. (lOth Form) Let n > 2 be an integer and M = {1, 2, ... , n}. 
For every k E {1, 2, ... , n- 1}, let 

1 . 
Xk = L (min A+ max A). 

n+ l ACM 

IAI=k 

Prove that x1, x2, ... , Xn-1 are integers, not all divisible by 4. 

We present the solution by Kiah Han Mao {Singapore}. 

For each i E {1, 2, ... , n}, there are (Z.:=-D subsets, each with 
k elements and contains i as the minimum element. (Note that 
(~) = 0 if k > n.) Also there are G=.~) subsets, each with k 
elements and contains i as the maximum element. Thus 

Xk = 
1 L (min A+ max A) 

n + l ACM 

IAI=k 

1 [ (n -1) (n -2) (k - 1) = n + 1 1 k -1 + 2 k -1 + · · · + (n + l- k) k -1 

(n -1) (n -2) (k - 1) l + n k -1 + (n -l) k -1 + · · · + k k -1 

= (~) 

~~M~~ 
~ ~ < 4 > 
~ ~ 

~,.----------------------------------------------~--- M E D L E Y 



Thus x1, ... , Xn-1 are all integers. Since x1 + · · · + Xn-1 +G)+ 
· · · + (n~ 1 ) = 2n- 2, not all of X1, ... , Xn-1 are divisible by 4. 

Next is the solution by Julius Poh Wei Quan (Raffles Junior Col­
lege). 

For each k-element subset A = { a1 , ... , ak} with ai < ai if 
i < j, with a1 = 1+p and ak = n-q, let B = {bb··· ,bk}, where 
bi = ai+q-p. We have minA+minB+maxA+maxB = 2n+2. 
Since there are (~) k-element subsets, we have 

1 ""' . 1 (n) 2n + 2 (n) Xk=n+ 1 ~(mmA+maxA)=n+ 1 k 2 = k · 

IAI=k 
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1. Two circles r 1 and r 2 intersect at M and N. 

Let .e be the common tangent to r 1 and r 2 so that M is closer 
to .e than N is. Let .e touch r 1 at A and r 2 at B. Let the line 
through M parallel to .e meet the circle r 1 again C and the circle 
r2 at D. 

Lines CA and DB meet atE; lines AN and CD meet at P; 
lines BN and CD meet at Q. 

Show that EP = EQ. 

Official solution: M is in fact the midpoint of PQ. To see this, 
D extend N M meeting AB at X. Then X is the midpoint of the 

~----.'---+---+-~IJ-- common tangent AB, because X being on the radical axis M N is 

E 

of equal power to the two circles. As PQ is parallel to AB, M is 
the midpoint of PQ. 

An easy diagram chasing of the angles shows that triangle 
E AB is congruent to triangle M AB. Hence EM is perpendicular 
to AB, thus perpendicular to PQ. From this it follows that EP = 
EQ. 

2. Let a, b, c be positive real numbers such that abc = 1. Prove 
that 

Official solution. Write a= xjy, b = yjz and c = zjx for some 
positive numbers x, y, z. RewritiQg the inequality in terms of 
x, y, z we-have 

(x- y + z)(y- z + x)(z- x + y) < xyz. 



Let the three factors on the left hand side be u, v, w, respectively. 
Since any two of u, v, w have positive sum, at most one of them is 
negative. If exactly one of u, v, w is negative, then the inequality 
holds. We are left with the case u, v, w > 0. By the AM-GM 
inequality, we have 

u+v 
r::::: < = x. yuv _ 

2 

Likewise ylvW < y, foU < z. Hence uvw < xyz as desired. 

Next is the solution by Dr. Wong Yan Loi {National University of 
Singapore). We may assume, without loss of generality, that a> 
1 > c(> 0). Let d = 1lc. Then d > 1. Substituting b = 1l(ac) 
into the right hand side of the inequality and multiplying it out, 
we have 

(a+ 1la) + (d + 1ld) +(aid+ dla)- (ad+ dl(a2
) + al(d2

))- 2 

= (a- 1)(1- d)+ (a- d)(d- 1)l(d2
) + (d- a)(a- 1)l(a2

) + 1. 

We may assume a > d. Then 

(d- a)(a- 1)l(a2
) < 0. 

The first two terms can be combined to get 

So the whole expression is < 1. 

Finally we have the solution by Chan Sing Chun {Singapore). 

Denote the left hand side of the inequality by L. If a- 1 + 
1 I b < 0, then a < 1 and b > 1. Thus b - 1 + 1 I c and c - 1 + 1 I a 
are both positive, whence L is negative and the inequality holds. 
The same argument applies when one of the other two factors is 
negative. Hence forth we assume that all the three factors in L are 
positive. Note that abc= 1 implies b(a- 1 + 1lb) = (1lc- b + 1), 
c(b-1+1lc) = (1la-c+1), a(c-1+1la) = (1lb-a+1). Thus 
L = (a + 1 - 1 I b) ( b + 1 - 1 I c)( c + 1 - 1 I a) and 

L2 = (a2
- (1- 1lb)2

) (b2
- (1- 1lc)2

) (c2
- (1 -1la)2

). 

All these imply that 

0 < a2
- (1- 1lb)2 < a2

, 

o < b2 
- ( 1 - 11 c) 2 < b2

, 

0 < c2 
- (1- 1la)2 < c2 



which in turn implies that 

L 2 < (abc) 2 = 1 and L < 1. 

3. Let n > 2 be a positive integer. Initially, there are n fleas on 
a horizontal line, not all at the same point. 

For a positive real number .X, define a move as follows: 

choose any two fleas, at points A and B, with A to the 
left of B; 

let the flea at A jump to the point C on the line to the 
right of B with BC / AB = .X. 

Determine all values of .X such that, for any point M on the 
line and any initial positions of the n fleas, there is a finite se­
quence of moves that will take all the fleas to the right of M. 

Official solution. We adopt the strategy to let leftmost flea jump 
over the rightmost flea. After k moves, let dk denote the distance 
of the leftmost and the rightmost flea and 8k denote the minimum 
distance between neighbouring fleas. Then dk > (n- 1)8k. 

After the ( k + 1 )st move, there is a new distance between 
neighbouring fleas, namely .Xdk. It can be the new minimum dis­
tance, so that 8k+I = .Xdk; and if not, then certainly 8k+l > 8k. 
In any case 

J~:1 
>min { 1, >.J~k} > min{1, (n- 1)>.}. 

Thus if .X > 1/(n- 1) then 8k+l > 8k for all k; the minimum 
distance does not decrease. So the positive of the leftmost flea 
keeps on shifting by steps of size not less that a positive constant, 
so that, eventually all the fleas will be carried as far to the right 
as we please. 

Conversely, if .X < 1/(n- 1), we'll prove that for any initial 
configuration, there is a point M beyond which no flea can reach. 
The position of the fleas will be viewed as real numbers. Consider 
an arbitrary sequence of moves. Let sk be the sum of all the 
numbers representing the positions of he fleas after the kth move 
and let Wk be the greatest of these numbers (i.e. the position of 
the rightmost flea). Note that sk < nwk. We are going to show 
that the sequence ( wk) is bounded. 

In the ( k + 1 )st move a flea from a A jumps over B, landing 
at C; let these points be represented by the numbers a, b, c. Then 
Sk+l - Sk +C-a. 

By the given rules, c- b = .X(b- a); equivalently .X(c- a) = 
(1 + .X)(c- b). Thus 

1+.A 
Sk+I- Sk = c- a= --(c- b) . 

.X 



Suppose that c > Wki the flea that has just jumped took the new 
rightmost position Wk+l = c. Since b was the position of some 
flew after the kth move, we have b < wk and 

This estimate is valid also when c < wk, in which case Wk+l -wk = 
0 and sk+l - sk = c- a > 0. 

Consider the sequence of numbers 

1+A 
Zk = A Wk - sk for k = 0, 1, .... 

The estimate we have just worked out shows that Zk+l - Zk < 0; 
the sequence is nonincreasing, and consequently Zk < z0 for all k. 

We have assume that A< 1/(n- 1). Then 1 +A> nA, and 
we can write 

1+A 
where p, = A - n > 0. 

So we get the inequality Zk = f.LWk + (nwk- sk) > f.LWk· It follows 
that wk < z 0 / p, for all k. Thus the position of the rightmost 
flea never exceeds a constant (depending on n, A and the initial 
configuration, but not on the strategy of moves). In conclusion, 
the values of A, asked about, are all real numbers not less than 
1/(n- 1). 

Day 2 

4. A magician has one hundred cards numbered 1 to 100. He 
puts them into three boxes, a red one, a white one and a blue one, 
so that each box contains at least one card. 

A member of the audience selects two of the three boxes, 
chooses one card from each and announces the sum of the numbers 
on the chosen cards. Given this sum, the magician identifies the 
box from which no card has been chosen. 

How many ways are there to put all the cards into the boxes so 
that this trick always works? (Two ways are considered different 
if at least one card is put into a different box.) 

Official solution: Suppose 1, 2 ... , k, k > 2, are in box 1, and k+ 1 
in box 2 and m is the smallest number in box 3. Then m - 1 is 
either in box 1 or 2. But it can't be in box 1 for (m) + (k) = 
(m- 1) + (k + 1), but it can't be in box 2 either as (m) + (1) = 
( m- 1) + 2. Thus we conclude that 1 and 2 are in different boxes. 
So we assume that 1 is in box 1, and 2, ... , k, k > 2 are in box 
2, k + 1 not in box 2 and m is the smallest number in box 3. If 



m > k + 1, then k + 1 is in box 1. Also m - 1 is not in box 1 
as (m- 1) + (2) = (m) + (1). Thus m- 1 is in box 2. This is 
not possible as (m) + (k) = (m- 1) + (k + 1). Thus m = k + 1. 
If k = 2, we have 1, 2, 3 in different boxes. Since a in box 1, 
a + 1 in box 2, a + 2 box 3 imply that a + 3 is in box 1. We 
have box i contains all the numbers congruent to i (mod 3). 
This distribution clearly works since a= i, b = j (mod 3) imply 
a+ b = k (mod 3) where k ¢ i,j (mod 3). 

Now suppose that k > 3. We conclude that k + 2 can't be 
included in any box. Thus k = 99. We see that this distribution 
also works. 

Hence there are altogether 12 ways. 

Second solution: Consider 1, 2 and 3. If they are in different 
boxes, then 4 must be in the same box as 1, 5 in the same box 
as 2 and so on. This leads to the solution where all numbers 
congruent to each other mod 3 are in the same box. 

Suppose 1 and 2 are in box 1 and 3 in box 2. Then 4 must 
be in box 1 or 2. In general, if k(> 4) is in either box 1 or 2, then 
k + 1 also must be in box 1 or 2. Thus box 3 is empty which is 
impossible. 

Similarly, it is impossible for 1 and 3 to be in box 1 and 2 in 
box 2. 

Thus we are left with the case where 1 is in box 1 and 2 and 
3 in box 2. Suppose box 2 contains 2, ... k, where k > 3, but does 
not contain k + 1 and m is the smallest number in box 3. Then 
m > k. If m > k + 1, then k + 1 must be box 1 and we see that 
no box can contain m- 1. Thus m = k + 1. If k < 99, we see that 
no box can contain k + 2. Thus k = 99. It is easy to see that this 
distribution works. Thus there altogther 12 ways. 

Third solution which is official: 

We show that the answer is 12. Let the colour of the number 
i be the colour of the box which contains it. In the sequel, all 
numbers considered are assumed to be integers between 1 and 
100. 

Case 1. There is ani such that i, i+1, i+2 have three different 
colours, say rwb. Then, since i + (i + 3) = (i + 1) + (i + 2), the 
colour of i+3 can be neither w(the colour of i+1) nor b(the colour 
of i+2). It follows that i+3 is r. Using the same argument, we see 
that the next numbers are also rwb. In fact the argument works 
backwards as well: the previous three numbers are also rwb. Thus 
we have 1, 2 and 3 in different boxes and two numbers are in the 
same box if there are congruent mod 3. Such an arrangement is 
good as 1 + 2, 2 + 3 and 1 + 3 are all different mod 3. There are 
6 such arrangements. 



Case 2. There are no three neighbouring numbers of different 
colours. Let 1 be red. Let i be the smallest non-red number, say 
white. Let the smallest blue number be k. Since there is no rwb, 
we have i + 1 < k. 

Suppose that k < 100. Since i + k = (i- 1) + (k + 1), k + 1 
should be red. However, in view if i + (k + 1) = (i + 1) + k, i + 1 
has to be blue, which draws a contradiction to the fact that the 
smallest blue is k. This implies that k can only be 100. 

Since (i -1) + 100 = i + 99, we see that 99 is white. We now 
show that 1 is red, 100 is blue, all the others are white. If t > 1 
were red, then in view of t + 99 = ( t - 1) + 100, t - 1 should be 
blue, but the smallest blue is 100. 

So the colouring is rww ... wwb, and this is indeed good. If 
the sum is at most 100, then the missing box is blue; if the sum 
is 101, then it is white and if the sum is greater than 101, then it 
is red. The number of such arrangements is 6. 

5. Determine whether or not there exists n such that 

n is divisible by exactly 200 different prime num­
bers and 2n + 1 is divisible by n. 

Official solution: The answer is yes and we shall prove it proving a 
more general statement: For each k E N, there exists n = n( k) E 
N such that n I 2n + 1, 3 I n and n has exactly k prime factors. 
We shall prove it by induction on k. 

We have n(1) = 3. We then assume for some k > 1, there 
exists n = n( k) with the desired properties. Then n is odd. Since 
23n + 1 = (2n + 1)(22n- 2n + 1) and 3 divides the second factor, 
we have 3n I 23

n + 1. For any positive odd integer m, we have 
23n + 1 I 23nm + 1. Thus if p is prime number such that p f n and 
p j23

n + 1, then 3npl23np + 1 and n(k + 1) = 3pn has the desired 
properties. Thus the proof would be complete if we can find such 
a p. This is achieved by the following lemma: 

Lemma. For any integer a > 2 such that 3 I a+ 1, there 
exists a prime number p such that p I a3 + 1 but p f a + 1. 

Proof. Assume that this is false for a certain integer a > 2. 
Since a3 + 1 = (a+ 1)(a2 - a+ 1), each prime divisor of 
a2 - a+ 1 divides a+ 1. Since a2 - a+ 1 =(a+ 1)(a- 2) +3, 
we conclude that a2 - a + 1 is a power of 3. Since a + 1 and 
a - 2 are both multiples of 3, we conclude that 9 f a 2 - a+ 1. 
This gives a contradiction as a2 - a + 1 > 3 for a > 2. 

6. Let AH1, BH2, CH3 be the altitudes of an acute-angled tri­
angle ABC. The incircle of the triangle ABC touches the sides 
BC, CA, AB at T1, T2, T3, respectively. Let the lines £1, £2,£3 
be the reflections of the lines H2H3, H3H1, H1H2 in the lines 
T2T3, T3T1, T1T2, respectively. 

~~M.tl! 

< 4 > lit. ~ ~ 
f. ~ 

··~=====------------------------------------------------- M E D L E Y 



Prove that f t, £2 , £3 determine a triangle whose vertices lie on 
the incircle of the triangle ABC. 

Official solution: Let Mt, M2, M3 be the reflections of Tt, T2, T3 
across the bisectors of LA, LB, LC, respectively. The points Mt, 
M2 , M3 obviously lie of the incircle of 6ABC. We prove that they 
are the vertices of the triangle formed by the images in question, 
which settle the claim. 

By symmetry, it suffices to show that the reflection lt of HtH2 
in T2T3 passes through M2 • Let I be the incentre of 6ABC. Note 
that T2 and H 2 are always on the same side of BI, with T2 closer 
to BI than H 2 . We consider only the case when Cis on this same 
side of B I, as in the figure (minor modifications are needed if C 
is on the other side). 

Let LA= 2a, LB = 2(3, LC = 21. 

Claim 1: the mirror image of H 2 with respect to T2T3 lies on 
the line BI. 

Proof of claim 1: Let f ..l T2 T3 , H 2 E f. Denote by P and S 
the points of intersection of BI with f and BI with T2T3. Note 
that S lies on both line segments T2 T3 and B P. It is sufficient to 
prove that LPSH2 = 2LPST2. We have LPST2 = LBST3 and 
by the external angle theorem, 

Next LB STt = LB ST3 = 1 by symmetry across BI. Note that 
C and S are on the same side of ITt, since LETtS = goo + a > 
goo. Then, in view of the equalities LISTt = LICTt = /, the 
quadrilateral SITtC is cyclic, so LISC = LITtC =goo. Hence 
LBSC = LBH2C, and hence the quadrilateral BC1!2S is cyclic. 
It shows that LPSH2 = LC = 21 = 2LPST2, as needed. This 
completes of the proof of the claim. 

Note that the proof of the claim also gives 

by symmetry across T2T3 and because the quadrilateral BCH2S 
is cyclic. Then, since M2 is the reflection of T2 across BI, we 
obtain LBPM2 = LBPT2 = (3 = LCBP, and so PM2 is parallel 
to BC. To prove that M2 lies on ft, it now suffices to show that 
ft is also parallel to BC. " 

Suppose (3 =I ri let the line CB meet H2 H3 and T2T3 at D 
and E, respectively. (Note that D and E lie on the line BC on 
the same side of the segment BC.) An easy angle computation 
gives LBDH3 = 21.8-11, LBET3 = I.B- 11, and so the line ft is 
.indeed parallel to BC. The proof is now complete. 


