


South African Mathematical Olympiad, 1999 

Third round 

1. How many non-congruent triangles with integer sides and 
perimeter 1999 can be constructed? 

2. A, B, C and D are points on a given straight line, in that 
order. Construct a square PQRS, with all of P, Q, Rand Son 
the same side of AD, such that A, B, C and D lie on PQ, S R, Q R 
and P S produced, respectively. 

3. The bisectors of angle BAD in the parallelogram ABCD 
intersects the lines BC and CD at the point K and L, respectively. 
Prove that the centre of the circle passing through the points C, K 
and L lies on the circle passing through the points B, C and D. 

4. The sequence L1 , L2 , L 3 , ... is defined by 

L1 = 1, L2 = 3, Ln = Ln-1 + Ln-2 for n > 2, 

so the six terms are 1, 3, 4, 7, 11, 18. Prove that Lp- 1 is divisible 
by p if pis prime. 

5. Let S be the set of all rational numbers whose denominators 
are powers of 3. Let a, b and c be given non-zero real numbers. 
Determine all real-valued functions f that are defined for x E S, 
satisfy 

f(x) = af(3x) + bf(3x- 1) + cf(3x- 2), 

if 0 ~ x < 1 and are zero otherwise. 

6. You are at a point (a, b) and need to reach another point 
( c, d). Both points are below the line x = y and have integer 
coordinates. You can move in steps of length 1, either upwards or 
to the right, but you may not move to a point on the line x = y. 
How many different paths are there? 

Austrian-Polish Mathematics Competition 1998 

1. Let x1, x2, Y1, Y2 be real numbers such that xf + x~ < 1. Prove 
the inequality 

(XIYl + X2Y2- 1)2 > (xf +X~- 1)(yr + Y~- 1). 



2. Consider n points P1 , P2 , ... , Pn lying in that order on a 
straight line. We colour each point in white, red, green, blue 
or violet. A colouring is admissible if for each two consecutive 
points Pi, Pi+! (i = 1, 2, ... , n-1) either both points have the same 
colour, or at least one of them is white. How many admissible 
colourings are there? 

3. Find all pairs of real numbers (x, y) satisfying the equations 

2 3_ 
-X -y, 2- y3 = x. 

4. Let m, n be positive integers. Prove that 

t l'Wmj < n+m(2m/4 -1). 
k=l 

5. Find all pairs (a, b) of positive integers such that the equation 

has three integer roots (not necessarily distinct). 

6. Distinct points A, B, C, D, E, F lie on a circle in that order. 
The tangents to the circle at the points A and D, and the lines 
BF and CE are concurrent. Prove that the lines AD, BC, EF 
are either parallel or concurrent. 

7. Consider all pairs (a, b) of natural numbers such that the 
product aabb when written in base 10, ends with exactly 98 zeroes. 
Find the pair (a, b) for which the product ab is smallest. 

8. Let n > 2 be a given natural number. In each unit square of an 
infinite grid is written a natural number. A polygon is admissible 
if it has area n and its sides lie on the grid lines. The sum of 
the numbers written in the squares contained in an admissible 
polygon is called the value of the polygon. Prove that if the values 
of any two congruent admissible polygons are equal, then all of 
the numbers written in the squares of the grid are equal. 

9. Let K, L, M be the midpoints of sides BC, CA, AB, respec.., 
tively, of triangle ABC. The points A, B, C divide the circumcir­
cle of ABC into three arcs AB, BC, CA. Let X be the midpoint 
of the arc BC not containing A, let Y be the midpoint' of the arc 
C A not containing B and let Z be the midpoint of the arc AB not 
containing C. Let R be the circumradius and r be the inradius of 
ABC. Prove that 

'r+KX+LY+MZ=2R. 



49th Romanian Mathematical Olympiad 1998 

Selected problems from the final round 

1. (7th form) Let n be a positive integer and XI, x2 , ... , Xn be 
integers such that 

xi+ x~ + · · · + x~ + n3 < (2n- l)(x1 + x2 + · · · + Xn) + n2. 

Show that 

(a) Xi > 0 fori= 1, 2, ... , n. 

(b) x 1 + x2 + .. .. + Xn + n + 1 is not a perfect square. 

2. (7th form) Show that there is no positive integer n such that 
n + k2 is a perfect square for at least n positive integer values of 
k. 

3. (7th form) In the exterior of the triangle ABC with LB > 45°, 
L.C > 45°, one constructs the right isosceles triangles AC M and 
ABN such that LCAM = L.BAN = 90° and, in the interior of 
ABC, the right isosceles triangle BC P with L.P = 90°. Show 
that M N P is a right isosceles triangle. 

4. (9th Form) Find integers a, b, c such that the polynomial 

f ( x) = ax2 + bx + c 

satisfies the equalities: 

f(f(l)) = f(f(2)) = f(f(3)). 

5. (9th Form) Let ABCD be a cyclic quadrilateral. Prove that 

lAC- BD! < lAB- CD!. 

When does equality hold? 

6. (10th Form) Let n > 2 be an integer and M = {1, 2, ... , n }. 
For every k E {1, 2, ... , n- 1}, let 

1 """ . Xk = Lt (mmA +max A). 
n + 1 ACM . 

IAI=k 

Prove that X1, x2, ... , Xn-l are integers, not all divisible by 4. 
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41st International Mathematical Olympiad 

Taejon, Korea, July 2000. 

1. Two circles r 1 and r 2 intersect at M and N. Let f be the 
common tangent to r 1 and r 2 so that M is closer to f than N 
is. Let f touch r 1 at A and r 2 at B. Let the line through M 
parallel to f meet the circle r1 again c and the circle r2 again at 
D. Lines CA and DB meet at E; lines AN and CD meet at P; 
lines BN and CD meet at Q. Show that EP = EQ. 

2. Let a, b, c be positive real numbers such that abc= 1. Prove 
that 

(a-l+D (b-l+D (c-l+D <1. 

3. Let n > 2 be a positive integer. Initially, there are n fleas 
on a horizontal line, not all at the same point. For a positive real 
number .A, define a move as follows: 

choose any two fleas, at points A and B, with A to the 
left of B; let the flea at A jump to the point C on the 
line to the right of B with BC/AB =.A. 

Determine all values of .A such that, for any point M on the line 
and any initial positions of the n fleas, there is a finite sequence 
of moves that will take all the fleas to the right of M. 

4. A magician has one hundred cards numbered 1 to 100. He 
puts them into three boxes, a red one, a white one and a blue 
one, so that each box contains at least one card. A member of 
the audience selects two of the three boxes, chooses one card from 
each and announces the sum of the numbers on the chosen cards. 
Given this sum, the magician identifies the box from which no 
card has been chosen. 

How many ways are there to put all the cards into the boxes so 
that this trick always works? (Two ways are considered different 
if at least one card is put into a different box.) 

5. Determine whether or not there exists n such that 

n is divisible by exactly 200 different prime numbers and 
2n + 1 is divisible by n. 

6. Let AH1, BH2, CH3 be the altitudes of an acute-angled tri­
angle ABC. The incircle of the triangle ABC touches the sides 
BC,CA,AB at T1,T2,T3, respectively. Let the lines £1,£2,£3 
be the reflections of the lines H2H3, H3H 11 H1H2 in the lines 
T2T3, T3T1, T1T2, respectively. 

Prove that f 1 , £2 , £3 determine a triangle whose vertices lie on 
the in circle of the triangle ABC. 



12th Nordic Mathematical Contest April 1998 

1. Find all functions f from the rational numbers to the rational 
numbers satisfying 

f(x + y) + f(x- y) = 2f(x) + 2f(y) 

for all rational x and y. 

Solution received from Jason Ying Hwei Ming {Victoria Junior 
College), Tan Chee Hau, Kwa Chin Lum, Christopher Tan Jun­
yuan and Kiah Han Mao {all from Raffles Junior College). We 
present solutions by Jason, Chee Hau and Chin Lum. We shall 
prove by induction that f(nr) = n2 f(r) for each positive inte­
ger n and each rational number r. The statement holds trivially 
for n = 1. Assume that it holds for n = 1, 2 ... , m. We have 
f(mr + r) + f(mr- r) = 2f(mr) + 2f(r) which implies 

f((m + 1)r) =- f((m- 1)r) + 2f(mr) + 2f(r) 

= -(m- 1)2 f(r) +2m2 f(r) + 2f(r). 

= (m + 1)2 f(r) 

Thus the statement holds for n = m + 1 as well and so the proof 
is complete by induction. For any rational number r = p / q where 
p, q are coprime integers with q > 0, we have 

q2 f(r) = f(qr) = f(p) = P2 f(1). 

Thus f(r) - kr2 where k = f(1) is a constant. Indeed, this 
function also satisfies the given conditions. 

2. Let 0 1 and 0 2 be two circles which intersect at points A and 
B. Let M 1 be the centre of 0 1 and M2 the centre of 02. Let P 
be a point on the line segment AB distinct from A and B so that 
I API =I= I BPI. Draw the line through P perpendicular to M1P and 
denote by 0 and D its intersections with 0 1 (see figure). Similarly 
(not drawn in the figure), draw the line through P perpendicular 
to M 2 P and denote byE and Fits intersections with 0 2 . Prove 
that 0, D, E and F are the corners of a rectangle. 

Similar solutions by Jason Ying Hwei Ming, Lim Yin {both from 
Victoria Junior College), Kiah Han Mao, Tan Chee Hau and Kwa 
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Chin Lum (all from Raffles Junior College). Since Pis the foot of 
the perpendicular from M 1 to the chord CD, P bisects CD. Sim­
ilarly, P bisects EF. Since P bisects the two diagonals, CF DE is 
a parallelogram. Next since CP · PD = AP · PB = EP · PF, we 
have C P = P F. Thus the diagonals are equal and consequently 
C F DE is a rectangle. 

3. (a) For which positive integer n does there exist a sequence 
x 11 ... , Xn containing each of the numbers 1, 2, ... , n exactly once 
and such that k divides x1 + x2 + · · · + Xk fork= 1, 2, ... , n? 

(b) Does there exist an infinite sequence x 1 , x 2 , .•• containing 
every positive integer exactly once and such that for any positive 
integer k, k divides x1 + x2 + · · · + Xk? 

Tan Chee Hau and Kwa Chin Lum {both of Raffles Junior College) 
submitted similar solutions to part (a). Let sk = X! + .. .. + Xk· 

Since n I Sn = n(n + 1)/2, we conclude that n must be odd. Now 
assume that n is odd. Then 

n(n + 1) _ 
Sn-1 = 

2 
- Xn = 0 (mod n - 1). 

Thus Xn = (n+1)/2 (mod n-1), whence Xn = (n+1)/2 because 
(n + 1)/2 + (n- 1) > n. Next, we have 

Sn-2 + Xn-1 = Sn-1 = Sn- Xn 

= (n- 1)(n + 1)/2 = (n + 1)/2 (mod n- 2). 

This implies that Xn-l = (n + 1)/2 (mod n- 2). Since (n + 
1)/2 + (n- 2) > n when n > 3, we have Xn-1 = (n + 1)/2 = Xn 

if n > 3. Thus no such sequence can exist if n > 3. 

For n = 3, x1 = 1, x2 = 3, X3 = 2 and for n = 1, x 1 = 1 are 
the only sequences with this property. 

Solution to {b) by Kwa Chin Lum (Raffles Junior College). Let 
x1 = 1. Then 1 I x 1. Suppose a sequence x 11 ... , Xk, has been 
constructed so that i I x 1 + · · · +Xi, i = 1, ... , k. Then x1 + 
· · · + Xk = mk for some positive integer m. Let p be the smallest 
positive integer such that Xi -=f p fori= 1, ... , k. If there exists a 
positive integer n such that m + n(k + 1) = p, then let Xk+I = p 
and we have a sequence such that i I x1 +···+xi, i = 1, ... , k + 1. 
If not then one can choose n0 so that 

(m + no)(k + 1) >Xi, i = 1, .. ·., k, 

and (m + no)(k + 1) = -p (mod k + 2). 

This is always possible by choosing a large n0 so that no = p - m 
(mod k + 2). Then letting Xk+l = (m + no)(k + 1) and Xk+2 = p 



will give a sequence such that i I x 1 +···+Xi, i = 1, ... , k + 2. 
In each case, we can extend the sequence to include p. Thus the 
required sequence exists. 

4. Let n be a positive integer. Count the number of k E 
{0, 1, ... , n} for which G) is odd. Prove that this number is a 
power of 2, i.e., of the form 2P for some non-negative integer p. 

We'll present two solutions. The first is by Kiah Han Mao and 
Tan Chee Hau (both of Raffles Junior College). Since G) = 
n!/k!(n- k)!, for it to be odd, we must have an = ak + an-k, 

where am denotes the highest power 2 that divides the integer m. 
Consider the binary representation of k, n- k, n: 

k = XnXn-1 ... Xo, n- k = YnYn-1 ... Yo, n = ZnZn-1 ... Zo. 

We shall prove that an = ak + an-k if and only if Xi + Yi = Zi for 
i = 0, ... , n. We have 

an= l;J + l;J + ''' = ZnZn-1· · .Zl +znZn-1· · .Z2 + · · · +zn· 

If Xi+Yi = Zi fori= 0, ... , n, then an= ak+an-k· If there exists 
i such that Xi + Yi i= Zi, let m be the largest integer such that 
Xm +Ym -=/= Zm· If Xm +Ym > Zm, then Xm +Ym > 1 and there must 
be a 'carry over' in the addition causing Xm+l + Ym+l -=/= Zm+l· 

Thus Xm + Ym < Zm, i.e., Xm = Ym = 0 and Zm = 1. This implies 
that 

ZnZn-1 · · · Zm > XnXn-1 · · · Xm + YnYn-1 · · · Ym· 

Since 

ZnZn-1 ... Zi > XnXn-1 ... Xi + YnYn-1 ... Yi for i = 1, 2, ... n, 

we have an > ak + an-k· With this the proof of the assertion is 
complete. If an = ak + an-k, then Zi = 0 implies Xi = Yi = 0 and 
Zi = 1 implies exactly one of Xi, Yi is 1. Thus the number of terms 
(~), k = 0, ... , n which are odd is 2rn, where rn is the number of 
ones in the binary representation of n. 

The second solution is due to K wa Chin Lum and Christopher Tan 
Junyuan (both from Raffies Junior College). It is easy to notice 
that in the Pascal triangle when the entries are taken mod 2, 
certain triangles drawn repeat themselves (see figure below). (The 
repeating pattern of triangles is known as Serpinski's casket.) To 
prove this we need: 



(1) (2Pk-l) -- 1 ( d 2) £ k 1 2P 1 . mo or = , ... , - since 

. (2P- 1) = 2P- 1 . 2P- 2 ... 2P- k 
k 1 2 k 

and each term of the product is a quotient of two odd numbers as 

2P- q 

q 

2p-r- S 

s 
where q = 2r s, and s is odd. 

(2) Let n = 2P- 1. Then from (1) 

(
n + 1) = { 0 (mod 2) if k = 1, 2, ... , n 

k - 1 (mod 2) if k = 0, n + 1. 

(3) For any nonnegative integer p and any integer q, let (~) = 
0 if q < 0 or q > p. Then it is easy to see that (n+;+k) = 
(~) (7~~) + (~) C~t~ 1 ) + · · · + (~) (nt1

). This follows readily from 
the recursive formula 

which holds true for the generalized binomial coefficients as well. 

( 4) Thus for each k = 0, 1, ... , n and i = 0, 1, .. . , k, we have 

Also, for each k = 0, 1, ... , nand i = k+1, ... , n, since 1 < i-k < 
i- k + 1 < · · · < i < n, we have (n+;+k) = 0 (mod 2). 

(5) In the Pascal triangle, we designate the top row as row 0 
and increasing the count as we go down. From ( 3) and ( 4), one 
concludes that the number of 1 in row i( < 2P) is. half the number 
of 1 in row 2P +i. Since for p = 1, there are one 1 and two 1 in row 
0 and row 1, respectively,. we conclude that the number of 1 in row 
i is 2ri, where ri is the number of 1 in the binary representation 
of i. 



First Japan Mathematical Olympiad, 1991 

Final Round 

1. On a triangle ABC, let P, Q, R be the points which divide 
the segments BC, C A, AB, respectively, in the ratio t : 1 - t. Let 
K be the area of the triangle whose three edges have the same 
length with the segments AP, BQ and C R and let L be the area 
of triangle ABC. Find K I L in terms of t. 

Five solutions were received: from Kwa Chin Lum and Kiah Han 
Mao (Raffles Junior College), Lim Yin and Jason Ying Hwei 
Ming {Victoria Junior College), as well as A. R. Pargeter (Eng­
land). We first present Lim Yin's solution. We have ARI RB = 
BPI PC= CQIQA = tl(1-t). Extend AB to X and ACto Y so 
that BX = AR and QC = CY. Then 6ABC is similar to 6AXY 
since BXIAB = t = CYIAC. So XY II BC and XYIBC = 1+t. 
Now let Z be the point on XY such that XZ = BP. Then 
6RXZ and 6ABP are congruent and so AP = RZ. From 
XYIBC = 1+t and XZIBC = BPIBC = t, we have ZYIBC = 
(1 + t) - t = 1. Thus ZY = BC and consequently, 6BCQ is 
congruent to 6ZYC and BQ = ZC. Thus 6RZC is the triangle 
whose sides are equal to AP, BP, RC. For any 6ABC let (ABC) 
denote its area. Then (AXY) = (1 + t) 2 (ABC) = (1 + t) 2 L. 
(ARC)= (RXZ) = (ZYC) = tL. So 

K = (RZC) = (AXY)- (ARC)- (RXZ)- (ZYC) 

= (1 + t) 2 L- 3tL 

and K I L = t2 - t + 1. 

Jason's solution. Set up the coordinates with A = (0, 0), B = 
(b, c), C = (a, 0). Then we have R = (bt, ct), Q = (a- at, 0) and 
P = (at+ b- bt, c- ct). Let D be the point so that ACDB is a 
parallelogram. Then 

AD =AC+CD = AC+RB 

= (a, 0) + (b, c)- (bt, ct) = (a+ b- bt, c- ct). 

Thus D = (a+b-bt,c-ct) and QP = (at+b-bt,c-ct) = AP. 
Therefore 6BQP has its sides equal to the segments AP, BQ, CR. 
Hence 

b c 1 
a-at 0 1 

K (BDQ) a+b-bt c- ct 1 

L (ABC) b c 1 
0 0 1 

\ a 0 1 

X 

A Q c y 

B(b,c} 

A(O, 0) £..--.c.~ 
Q(a - at, 0) C(a, 0) 



Han Mao's solution. Let AB = b and AC = c. Then (ABC) = 
~lb x cl. We also have BQ = BA + AQ = -b + tc, CR = 
CA+AR = -c+ (1-t)b, AP = AC+CP= c+t(b- c). Thus 
BQ + CR + AP = 0. Hence 

1-­
K= 21BQ X CRI 

1 
= -ltc - b x ( 1 - t) b - c) I 

2 

= ( t
2 
-; + 1) I b X c I = ( t 2 - t + 1) L -

) 

2. Let N be the set of all positive integers. The maps p, q: N ~ N 
are defined as follows: 

p(1) = 2,p(2) = 3,p(3) = 4,p(4) = 1;p(n) = n if n > 5. 

q(1) = 3,q(2) = 4,q(3) = 2,q(4) = 1;q(n) = n if n > 5. 

(a) There exists a map f : N ~ N such that f(f(n)) = 
p(n) + 2 for all n E N. Find an example of such a map 
f. 

(b) Show that there does not exist a map g : N ~ N such 
that g(g(n)) = q(n) + 2 for all n EN. 

(a): Solution by Lim Yin (Victoria Junior College), Christopher 
Tan Junyuan, Tan Chee H au and K wa Chin Lum (all from Raffles 
Junior College). The following function has the required proper­
ties: · 

2 ifn = 1 
4 ifn = 2 
7 if n = 3 

f(n) = 5 ifn = 4 
/ 

3 if n = 5 
n+3 if n = 6, 8, ... " n-1 if n = 7, 9, ... 

Solution {b): Solution by Lim Yin (Victoria Junior College). Also 
solved by Christopher Tan Junyuan, Tan Chee Hau and Kwa Chin 
Lum (all from Raffles Junior College. Suppose such a function g 
exists. Then 

Let g.(3) = k. Then 

if n = 1 
ifn = 2 
ifn = 3 

4 if n = 4 
n+4 ifn>5 

' ¥ 

g4 (k) = g4 (g(3)) = g5 (3) = g(g4 (3)) = g(3) = k. 



Thus k = 3 or 4. If g(3) = 3, then g(g(3)) = g(3) = 3, a contradic­
tion. If g(3) = 4, then 4 = g(g(3)) = g(4) and g(g(4)) = g(4) = 4 
again a contradiction. Thus no such function can exist. 

3. Let A be a positive integer of 16 digits in the decimal system. 
Prove that we can chose some successive digits from A such that 
their product is a square of an integer. 

Similar solutions by Lim Yin (Victoria Junior College), Kwa Chin 
Lum and Tan Chee Hau (both from Raffles Junior College). Let 
B(i,j) represent the product of the digits of A from the ith digit 
to the jth digit, i < j. The possible prime factors are 2, 3, 5, 7. 
Consider the numbers B(1, 1), B(1, 2), ... , B(1, 16). We can write 
B(1,i) = 2Pi3qi5ri78 i. If there is ani, such that Pi,Qi,ri,si are 
all even, then B(1, i) is a perfect square. If not, then among the 
16 4-tuples (pi, Qi, ri, si), i = 1, 2 ... , 16, two must have the same 
parity, say (Prn, Qrn, rrn, srn) and (Pn, Qn, rn, sn), m < n have the 
same parity, i.e., Pn - Prn, Qn - Qrn, rn - rrn, Sn- Srn are all even. 
Then B(m + 1, n) = B(1, n)/ B(1, m) is a perfect square. 

4. On a rectangle chess board of size 10 x 14, the squares are 
coloured white and black alternately. We write 0 or 1 in every 
square so that every row and every column contains an odd num­
ber of 1. Prove that the total number of 1 in the black squares is 
even. 

Similar solutions by Lim Yin (Victoria Junior College), Kwa Chin 
Lum and Tan Chee Hau (both of Raffles Junior College) and Lim 
Chong Jie. Also solved by Kiah Han Mao (Raffles Junior College). 
Let the ( 1, 1) square be black. Add up the odd columns and the 
even rows. This is the sum of 12 odd numbers so it is even. Now 
each black cell appears exactly once in the sum and each white 
cell appears either twice or none at all in the sum. Since the sum 
is even, the sum of the numbers in the black cells is even, or there 
is an even number of ones in the black cells. 

(Note: A similar version of this problem appeared as Problem 1 
of Ukrainian Mathematical Olympiad 1997. The second solution 
published in Medley (Vol. 26, No. 2, December 1999} works for 
this case and is in fact the solution presented here.) 

5. Let A be a set of n points on a plane (n > 2). Prove that 
there exists a closed circular disk with two points of A at the two 
ends of a diameter and which contains at least l n/3 J points of 
A. (Note: For any real number x, lxJ denotes the largest integer 
< x.) 

No solution was received. We present the official solution. Let 
D be the smallest closed disk which contains all points of A. We 
denote the boundary of D by aD. If there are only two points of 
A on 8 D, then these two points are on a diameter of D and D is 
the required disk. If there are at least three points of A on aD, 
then we can find three points P, Q, R such that flPQ R is either 



acute-angled or right-angled. If LlPQ R is right-angled, then D 
is the required disk. If LlPQ R is acute-angled, let D 1 , D 2 , D 3 be 
closed disks whose diameter are PQ, QR, RP, respectively. It is 
easy to see that one of the Di's is the required disk. 

Georgian Mathematical Olympiad, May 1997 

Selected problems from the final round 

1. (9th Form) Prove that for any positive integer n, the following 
equalities hold: 

l vn + J n + 1J = l J 4n + 1J = l v' 4n + 2J = l v' 4n + 3 J . 

Solution by Tan Chee Hau, Kiah Han Mao, Kwa Chin Lum {all 
from Raffies Junior College) and Lim Chong Jie. First, we have 

Thus 

4n2 +4n+ 1 > 4n2 +4n > 4n2 

* 2n + 1 > 2 J n( n + 1) > 2n 

=} 4n + 2 > n + 2 J n( n + 1) + ( n + 1) > 4n + 1 

=} v'4n + 2 > vn + v'n + 1 > v'4n + 1. 

l v' 4n + 2J > l vn + v' n + 1J ~ l v' 4n + 1J . 

If there is an integer k such that v' 4n + 1 < k < v' 4n + 3, then 
4n+ 1 < k2 < 4n+3, i.e., k2 = 2, 3 (mod 4) which is impossible. 
Thus we conclude that l v' 4n + 1J = l v' 4n + 3J. From this the 
conclusion follows. 

2. (9th Form) There are 40 participants in a mathematical com­
petition. Each problem was marked with a +, a - or 0. After 
all the papers were marked it was found that no two papers had 
the same number of+ and the same number of- marks simul­
taneously. What was the smallest number of problems that could 
have been offered to the contestants? 

Solution by Tan Chee Hau, Kwa Chin Lum, Kiah Han Mao {all 
from Raffies Junior College) and Lim Chong Jie. Suppose there 
are n questions. If '0' is not assigned to any question, then the 
number of questions assigned '+' is i, while the number of ques­
tions assigned '-' is n- i, i = 0, ... , n. If '0' is· assigned to one 
question, then the number of questions assigned'+' is i, while the 
number of questions assigned'-' is n -1- i, i = 0, ... , n -1, etc. 
Thus the total number of ways of assigning the number of'+', '-' 
and '0' is 1 + 2 + · · · + (n + 1) = (n + 1)(n + 2)/2. Since there are 



40 students, we have (n + 1)(n + 2)/2 > 40, which means n > 8. 
Thus the smallest number of questions is 8. It is clear from the 
forgoing discussion that with 8 questions, the required assignment 
is possible, 

3. (9th Form) In the equilateral triangle ABC, points D and 
E are chosen on the sides BC and BA, respectively, so that 
LDAC = LECA. The lines AD and CE meet at a point F. 
The incircles of the triangle AFC and the quadrilateral BDFE 
have equal radii. Find the radius of these circles if the length of 
the side of ABC is a. 

We present similar solutions by Tan Chee Hau, Kwa Chin Lum, 
Kiah Han Mao{all from Raffles Junior College). Also solved by 
A. R. Pargeter {England}. Let the equilateral triangle be of unit 
side. Then the actual answer would be a times the answer ob­
tained in this case. Let the radius of the two incircles be r and 
let BD = BE = x (see Figure). Apply Menelaus' Theorem to 
6ABD and 6ABP, we have 

1- X 1 DF 
--·-=1 

X 1- X FA , 

1 -X . BF . 1/2 = 1 
X FP 1 , 

i.e., 

I.e., 

DF EF 
FA= FC =x 

BF 2x --FP 1-x 

The latter also implies that FP = ~~~~)). Let AF =a, then we 
have DF =ax= EF and FC =a. For each polygon AB ... D, 
we denote its area by (AB ... D). Let (BEF) = Q, (AFE) = P, 
(AF P) = R, we have 

p 

Q 
1-x 

X 
and 

P+Q 
R 

Thus ~ = ;:: . We also have 

1 + (P/Q) 
(R/Q) 

BF 
FP 

2x 
1-x 

2(AFC) = r(1 + 2a) and 2(BEFD) = r(2x + 2ax). 

Since (BEFD)/(AFC) = Q/R, we have 

x 1+a 
1- x- 1 + 2a' 

which implies 
1- 2x 

a= . 
3x -1 

Consider the right-angled triangle AP F, we have · AP2 + F P 2 = 
a 2 or , 

~ + ~ ( 1 - x) 2 = ( 1 - · 2x) 2 

4 4 1 + x 3x -1 
{:} x(x- 1)(5x2 - 14x + 5) = 0. 

A 

B x D 1-x C 



Since 0 < x < 1, we have x = (7- 2J6)/5. We are now ready to 
calculate r. Since ( AFC) is the product of its semi perimeter and 
its inradius and also (AFC) = ~~(ABC), we have: 

r ( 1 + 2a) = ! v'3 ( 1 - x) . 
2 2 2 l+x 

Thus 

r= v'3(1-x)( 1 ) = v'3-J2 
2 1 + x 1 + 2a 2 

4. (lOth Form) Find all triples (x, y, z) of integers satisfying the 
inequality: 

Solution by Tan Chee Hau, Kwa Chin Lum, Kiah Han Mao (all 
from Raffies Junior College). By completing squares, we have 

x 2 + y2 + z2 < xy + 3y + 2z 

¢:? (2x- y)2 + (3y2 + 4z2
- 12y- 8z) < 0 

Thus for a solution to exist, 

3y2 + 4z2
- 12y- 8z = 3(y- 2) 2 + 4(z- 3)(z + 1) 

= 4(z- 1)2 + (3y2
- 12y- 4) 

< 0. 

Thus we need 

(z- 3)(z + 1) < 0 and 3y2
- 12y- 4 < 0, 

I.e., 
z = 0, 1,2 and y = 0, 1,2,3,4. 

The solutions can now be worked out by considering all the 
cases. For example, when (y, z) = (0, 0), x2 < 0 and there is 
no solution; when (y, z) = (0, 1), x2 < 1 and x = 0 is the only 
solution. All the solutions are: 

(x, y, z) = (0, 0, 1), (0, 1, 0), (1, 1, 0), ( -1, 1, 1), (0, 1, 1), (1, 1, 1), 

(2, 1, 1), (0, 1, 2), (1, 1, 2), (0, 2, 0), (1, ·2, 0), (2, 2, 0), 

(0, 2, 1), (1, 2, 1), (2, 2, 1), (0, 2, 2), (1, 2, 2), (2, 2, 2), 

(1, 3, 0), (2, 3, 0), (0, 3, 1), (1, 3, 1), (2, 3, 1), (3, 3, 1), 

(1,3,2), (2,3,2), (2,4,1). 



' 

... 

5. (lOth Form) Determine whether or not it is possible to fill an 
n x n table with entries equal to 1, -1 or 0 so that when calculating 
the sums of the entries along the rows and the columns one could 
get 20 different numbers. 

Solution by Tan Chee Hau, Kiah Han Mao,Kwa Chin Lum {all 
from Raffles Junior College). In order to have 20 different row 
and column sums, n > 10. The following table gives a solution 
for n = 10. 

1 1 1 1 1 1 1 1 0 0 
J 1 1 1 1 1 1 1 0 0 -1 

1 1 1 1 1 .. 1 0 0 -1 -1 
1 1 1 1 1 0 0 -1 -1 -1 
1 1 1 1 1 0 -1 -1 -1 -1 
1 1 1 1 1 -1 -1 -1 -1 -1 
1 1 1 1 0 -1 -1 -1 -1 -1 

~ 

1 1 1 0 -1 -1 -1 -1 -1 -1 
1 1 0 -1 -1 -1 -1 -1 -1 -1 
1 0 -1 -1 -1 -1 -1 -1 -1 -1 . 

For larger values of n, simply put this table anywhere, say the top 
left corner and enter 0 at the other places. 

6. (lOth Form) Prove that in any triangle, pR > 28, where 
p, R, 8 are, respectively, the semi perimeter, circumradius and the 
area of the triangle. 

Solution by Tan Chee Hau, Kwa Chin Lum {both from Raffles 
Junior College). Also solved by A. R. Pargeter (England}. Let 
0 and I be the circumcentre and the incentre. Then by Euler's 
Theorem, 

012 = R2
- 2rR = R(R- 2r) > 0. 

Thus R > 2r and pR > 2r P = 28 as required. 

7. (11th Form) Two positive numbers are written on a board. 
At each step you must perform one of the following: 

(i) choose one of the numbers, say a, on the board and write 
down either a2 or lja. 

(ii) choose ~wo numbers, say a, b, on the board and write 
down either a+ b or Ia- bj. How should you proceed 

\ .... in order that the product of the two initial numbers will 
eventually be written on the board? 

>( Solution by Tan Chee Hau, Kwa Chin Lum(both.from Raffles Ju­
nior College). Let a, b(a > b) be the initial numbers. In each of 
the following steps write: -

(1) ! '~ 
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40th International Mathematical Olympiad 

Bucharest, Romania, July 1999 -
1. Determine all finite sets S of at least three points in the plane 
which satisfy the following condition: 

for any two distinct points A and B in S, the perpen­
dicular bisector of the line segment AB is an axis of 
symmetry for S. 

' 

Solution. Let G be the centre of gravity of the set S. Since the 
perpendicular bisector of the line joining every pair of points is 
an axis of symmetry, G lies on the perpendicular bisector. Thus 
the perpendicular bisectors meet at a common point G. Thus the 
points lie on a circle. Let a, b, c be three consecutive points. Since 
the perpendicular of ac is an axis 'Of symmetry, b must lie on it. 
Thus the lengths of ab and be are equal. Thus the points are the 
vertices of a regular polygon. 

Alternative solution: One can show easily that the boundary of 
the convex hull of the points form a regular polygon as in the 
second half of the previous proof. The only thing left to do is to 
prove that there is no point in the interior. This can be proved 
by contradiction. 

2. Let n be a fixed integer, with n > 2. / · 

(a) Determine the least constant C such that the inequality 

L . XiXj(X~ + x]) < c( L Xi)

4 

l~i<j~n 1$i~n 

holds for all real numbers x17 ••• , Xn > 0. 



·' 

(b) For this constant C, determine when equality holds. 

Solution: The inequality is symmetric and homogeneous, so we 
can assume XI > x2 > · · · > Xn > 0 and L: Xi = 1. In this case 
we have to maximize the sum 

F(x~, ... , Xn) = L XiXj (x~ + x]). 
i<j 

Let Xk+I be the last nonzero coordinate and we assume that k > 2. 
We shall replace x = (xi, ... , Xk, Xk+I, 0, ... , 0) with 

X1 = (xi, ... , Xk-I, Xk + Xk+I, 0, ... , 0) 

to increase the value ofF as shown below: 

k-I 

F(x')-F(x) = XkXk+I [3(xk + Xk+I) L Xi- x~- x~+I] 
i=I 

= XkXk+I[3(Xk + Xk+I)(1- Xk- Xk+I)- X~- X~+I] 

= XkXk+I(Xk + Xk+I)(3- 4(Xk + Xk+I)) + 2XkXk+I]· 

From " 

it follows that 2/3 > Xk + Xk+b and therefore F(x')- F(x) > 0. 
After several such substitutions, we have 

F(x) < F(a, b, 0, ... , 0) = ab(a2 + b2
) 

1 1 = "2(2ab)(l- 2ab) < S = F(1/2, 1/2, 0, ... , 0). 

Thus C = 1/8 and equality occurs if and only if two of the xi's 
are equal (possibly zero) and the remaining variables are zero. 

3. Consider an n x n square board, where n is a fixed positive 
even integer. The board is divided into n2 unit squares. We say 
that two different squares on the board are adjacent if they have 
a common side. N unit squares on the board are marked in such 
a way that every square (marked or unmarked) on the board is 
adjacent to at least one marked square. Determine the smallest 
possible value of N. 

Solution. Let n = 2k. First colour the board black and white like 
a chessboard. We say that a set S of cells is covered by a set M 
of marked cells if every cell in S is neigbour to a cell in M. Let 
f w ( n) be the minimal number of white cells that must be marked 



so as to cover all the black cells. Define similarly !b(n). Due to 
symmetry of the chessboard (n is even), we have 

fw(n) = /b(n). ,, 

Since black cells can only be covered by marked white cells and 
vice versa, we have 

N = fw(n) + /b(n). 

Place the board so that the longest black diagonal is horizontal. 
Now consider the horizontal rows of white cells. Mark the odd cells 
of the first row, third row, fifth row, etc. (The figure illustrates 
the case n = 8). Call this set of cells M. The number of cells in 
Mis 

k(k + 1) 
1+2+···+k= 2 . 

It is easy to see that the black cells are covered by M. Thus 

fw(n) < k(k: 1) ' · 

Now consider the cells in M. No two of them have a common 
black neighbour. So we need to mark at least k(k + 1)/2 black 
cells in order to cover M. Therefore 

Thus 

~ 

t() 
k(k+1) 

b n > . - 2 

/b(n) = fw(n) = k(k + 1)/2. 

N = /b(n) + fw(n) = k(k + 1). 

4. Determine all pairs (p, q) of positive integers such that p is 
prime, n < 2p, and (p - 1) n + 1 is divisible "by nP-l. 

Solution. Clearly (1,p) and (2, 2) are solutions and for other so­
lutions we have p > 3. Now assume that n ~ 2 and p > 3. 
Since (p- 1)n + 1 is odd and is divisible by nP-l, n must be odd. 
Thus n < 2p. Let q be the smallest prime divisor of n. From 
q I (p - 1 )n + 1, we have 

(p- 1)n _ -1 (mod q) and 
'i;' ' 

gcd(q,p ~ 1) = 1. 

But gcd(n, q- 1) = 1 (from the choice of q), there exist integers 
u and v such that un + v(q- 1) = 1, whence 



because u must be odd. This shows q I p and therefore q = p. 
Hence n = p. Now 

pP-1 I (p- 1)P + 1 

' = p2 (P"-2- (;)P"-3 + ... + ~ p 3)p- ~ p 2) + 1) 
Since every term in the bracket except the last is divisible by p, 
we have p- 1 < 2. Thus p = 3 = n. Indeed (3, 3) is a solution. 

In conclusion, the only solutions are (1,p), (2, 2), (3, 3). 

5. Two circles r 1 and r 2 are contained inside the circler, and 
are tangent to r at the distinct points M and N, respectively. r 1 

passes through the centre of r 2. The line passing through the two 
points of intersection of r 1 and r 2 meets r at A and B. The lines 
M A and M B meet r 1 at C and 1), respectively. 

Prove that CD is tangent to r 2. 

Solution: We first prove a lemma. -( ' 

Lemma: Let r 1 and r 2 be two circles such that one does not 
contain the other. Let r be a circle containing both r 1, r 2 and 
touches r 1 at P, r 2 at S. Let l be a chord of r which is tangent 

. to r 1 at Q and r 2 at R, with both circles on the same side of 
the chord. Then PQ and S R meet at a point M which is on r. 
Furthermore M is on the radical axis of r 1 and r 2. 

Proof: Let 0, 0 1 ,02 be the centres of r, rb r2, respectively. 
Produce PQ to meet rat X. Then it is easy to see that 0 1QIIOX. 
Thus the tangent at X is parallel to f. Produce SR to meet rat 
Y . A similar consideration shows that the tangent at Y is also 
parallel to f. Thus X= Y = M. Since f is parallel to the tangent 
at M, we have LSPQ = 180° - L.QRS. Thus PQRS is cyclic. 
Hence the powers of M with respect to r 1 and r 2 are equal and 
M is on the radical axis of both. This completes the proof of the 
lemma. 

Let E be the intersection of N A with r 2 and F be the inter­
section of N B with r 2. From the lemma, and since the radical axis 
in this case is the common chord AB, we known that C E and D F 
are both common tangents of r 1 and r 2. Thus 0 10 2 is the perpen­
dicular bisector of CD, i.e., 020 = 02D and L020D = L02DO. 
Since CE is tangent to rb LE002 = L02DC . L02CD. Thus 
0 D is tangent to :t 2. 

\ 
( 

l 



6. Determine all functions f : IR-+ IR such that 

f(x- f(y)) = f(f(y)) + xf(y) + f(x)- 1 

for all x, y E IR. -\ ~ 

Solution. Let A= Imf and c = f(O). By putting x = y = 0, we 
get f (-c) = f (c) + c - 1, so c # 0. 

It is easy to find the restriction f to A. Take x = f(y) to 
obtain · 

c+ 1 x2 

f( x) = -
2

- - 2 for all x E A. (1) 

The main step is to show that A- A= IR. Indeed, for y = 0, we 
get: 

{f(x- c)- f(x) I x E IR} = {ex+ f(c)- 1 I x E IR} = IR 

because c -f= 0. , 

{The following is due to Lim Chong Jie.) With this we con-
r 

clude that the given functional equation is equivalent to the fol- (.; 
lowing: 

I • 

f(x- y) = f(y) + xy + f(x)- 1, for all x, y E IR. 

By putting y = 0, we get f(O) = 1. Replacing y by x, we have 

--t ~ 1 == 2 f ( x) + x2 
- 1, 

x2 ) 
i.e., f(x) = 1- 2 . 1 , 

- .. 
It is easy to check that this function satisfies the gi~en. functional 
equation. · ,~ 

\ 

• j. 


