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South African Mathematical Olympiad, 1999

Third round

1. How many non-congruent triangles with integer sides and
perimeter 1999 can be constructed?

2. A,B,C and D are points on a given straight line, in that
order. Construct a square PQRS, with all of P,Q, R and S on
the same side of AD, such that A, B,C and D lie on PQ,SR,QR

and PS produced, respectively

3.  The bisectors of angle BAD in the parallelogram ABCD
intersects the lines BC and C'D at the pomt K and L, respectively.
Prove that the centre of the circle passing through the points C, K
and L lies on the circle passing through the points B, C' and D.

4. The sequence Ly, Lo, L3,... is defined by

A =1, T3 L, = £y 4 baoslfor n'>2,

so the six terms are 1, 3,4,7,11, 18. Prove that L, — 1 is divisible
by p if p is prime.

5. Let S be the set of all rational numbers whose denominators
are powers of 3. Let a,b and ¢ be given non-zero real numbers.
Determine all real-valued functions f that are defined for z € S,
satisfy _

f(z) =af(3z) +bf(3z — 1) + cf(3z — 2),

if 0 <z <1 and are zero otherwise.

6. You are at a point (a,b) and need to reach another point
(e, d) Both points are below the line # = y and have integer
coordinates. You can move in steps of length 1, either upwards or
to the right, but you may not move to a point on the line z = y.
How many different paths are there?

Austrian-Polish Mathematics Competition 1998

1. Let z1,72,y1, ¥ be real numbers such that 22 +z2 < 1. Prove
the inequality

(z1y1 + 2ay2 — 1)% > (23 + 23 — 1)(y? +v3 — 1).




2. Consider n points P1,P2%, P lying in that order on a
straight line. We colour each pomt in white, red, green, blue

or violet. A colourmg is admissible if for each two consecutive

“points Py Porifi =1,2,.0 . 0— 1) either both points have the same

colour, or at least one of them is whlte How ‘many admlsmble
colourings are there"

3. Find all pairs of real numbers (z, y) satlsfymg the equatlons
4. Let myn be positiv'e iknteg‘ers. Prove that :

zn: B e Ve <¥n‘4'-‘m(2m/4 ki

k=1

5. Find all pairs (a b). of POSltlve mtegers such that the equationt (e

e —17x +am—b2—0

* has three integer roots (not necessanly drstmct)

" 6. Distinct. pomts A B C' D E, F he on a c1rcle in that order 5

BF and CE are concurrent Prove that the hnes AD BC EF’ -3

are either parallel or concurrent.

7.  Consider all pairs (a, b) of natural numbers such that the{
product a®b® when written in base 10, ends with exactly 98 zeroes

- Find the pair (a, b) for which the product ab is. sma.llest

8. Letn > 2beagiven natural number. In each un1t square of an
infinite grid is written a natural number. A polygon is admissible
if it has area n and its sides lie on the- grid lines. The sum of
the numbers written in the squares contained in an admissible .
polygon is called the value of the polygon. Prove that if the values
of any two. congruent admissible polygons are equal, then all of

the numbers written in the squares of the grld are equal

9. Let K,L,M be the midpoints of sides BC, CA AB, respec-f K
tively, of trlangle ABC. The points A, B,C d1v1de the circumcir-

cle of ABC into three arcs AB, BC, C’A Let X be the midpoint
of the arc BC not containing A let Y be the midpoint of the arc

C A not containing B and let Z be the midpoint of the arc AB not
containing C. Let R be the circumradius and r be the inradius of

ABC. Prove that

T+ KX +LY +MZ=2R

R



, (7th form) Sho that there is no positwe mteger n such that
D4 ) —F« 2 IS ‘a perfec ‘squaffe f@r at least n posmwe mteger values of

(7th form) the extenor of the nangle ABC’ with AB > 45°

ZC > 45°, one constructs the nght 1sost:eles tmangles ACM and
ABN such tMtZCAM = AN : and., in the interior of
i S‘how '

(ch qum) Fm '1ntegers a, b wc such that the polynormal

(a:) =az? + bx + ¢

sa,t}sﬁes the equahtles
e )—f(f(Z)) f(f(3))

(9th Form) Let ABCD be a cychc quadnlateral Prove that

|AC BD] s |AB CDI

When dO&S equahty hold?

iy ~ (10th Form) Let T2 be an 1nteger and M {1525 N5}
For every ke {1 2,...,m— 1}, lete st

TRty (mlnA-t-maxA)
n+l ACM

J | =kt

;P,,ryovethe,t z1h :1:2 , ' :c,;’_ly, are i;ntegers,‘not' all divisible by 4.




41st International Mathematical Olympiad I

Taejon, Korea, July 2000

1. Two circles I'y and I'; intersect at M and N Let £ be the
common tangent to I'y and I'; so that M is closer to £ than N
is. Let £ touch I'; at A and ', at B. Let the line through M
parallel to £ meet the circle I'; again C and the circle I'; again at
D. Lines CA and DB meet at E; lines AN and CD meet at P;
lines BN and CD meet at Q. Show that EP = EQ.

2. Let a,b,c be posmve real numbers such that abc = il Prove

that
(a_—1+%) (b—1+_.1) (c-;l+l) si._

3. Letn > e be a positive integer. Imtlally, there are n fleas
on a honzontal line, not all at the same pomt For a posmve real
“number A, deﬁne a move as follows: e |

choose any pwo ﬂeas, at points A and B, with A to the
left of B; let the flea at A jump to the pomt C on the
line to the nght of B Wlth BC’/AB A

Determine all values of \ such that, for any point M on the hne
and any initial positions of the n ﬁeas, there is a finite sequence
of : moves that W111 take all the fleas to the right of M.

4. A maglman has one hundred cards numbered 1 to 100. He

" _puts them into three boxes, a red one, a white one and a blue

“one, so that each box contains at least one card. A member of
the audience selects two of the three boxes, chooses one card from

-each and announces the sum of the numbers on the c}losen cards.
Given this sum; the magician identifies the box from whxch no
card has been chosen.- \ :

How ma.ny ways are there to put all the cards 1nto the boxes SO
that this trick always works? (Two ways are considered different
if at least one card is put into a different box)

5. Determine whether or not there exiovem stich that

n is divisible by exactly 200 different pmme numbers and N
2" +1is divisible by n. . , o

6. Let AH,, BH,,CHj; be the a.ltltudes of an acute—angled tr1~

angle ABC. The incircle of the triangle ABC touches the sides
BC,CA,AB at T1,T2,T3, respectively. Let the lines £1,45,43

be the reﬂectlons of the lines H2H3,H3H1,H1H2 in the Imes y

Ts T3, 537y, 1715, respectlvely

Prove that 21,82, L3 determme a triangle whose vertices l1e on
the incircle of the triangle ABC.




. Selutions -

12tthbl;djic Mathematizcﬁ:talg Centest April 1998 |}

1. Fmd all functlons f from the ratlonal numbers to the rational
numbers satlsfymg

S + y) + f(w = y) = 2f(z)+ 2f(y)

for all ratlonal zand y.

Solution recewed from Jason ang Huwei Mmg (Victoria Junior
College), Tan Chee Hau, Kwa Chin Lum, Christopher Tan Jun-

yuan and Kiah Han Mao (all from Raffles Junior College). We
" present solutions by Jason, Chee Hau and Chin Lum. We shall

prove by induction that f(nr) = n?f(r) for each positive inte-
ger n_and each rational number r. The statement holds trivially
forn = 1. Assume that it holds for n.= 1,2...,m. We have
f(mr +7) + f(mr - r) = 2f(mr) + 2f (r) which implies

flm+ 1)7‘) = —f((m = 1)r) + 2f(mr) + 2f(r)
= —(m=1)’f(r) + 27'nzf(f‘) +2f(r).
(m+1)2 f(r)

: Thus the statement holds for n = m 2 1 as well and so the proof
is complete by induction. For any rational number r = p/q where
p,q are copnme mtegers mth qg >0, we have

@ f(r) = flar) = f(p) = pzf(l)-

Thus f(r) kr where k = f(1) is a constant. Indeed, this

function also satisfies the given conditions.

ol Let C; and C; be two circles which intersect at points A and |
- B. Let M; be the centre of C; and M, the centre of C5. Let P

be a point on the line segment AB distinct from A and B so that
|AP| # |BP|. Draw the line through P perpendicular to M; P and
denote by C and D its intersections with C; (see figure). Similarly
(not drawn in the figure), draw the line through P perpendicular
to My P and denote by E and F its intersections with C. Prove

~ that C, D, F and F are the corners of a rectangle.
Similar solutions by Jason Ying Hwei Ming, Lim Yin (both from

Victoria Junior College), Kiah Han Mao, Tan Chee Hau and Kwa




Chin Lum (all f'rom Raﬁles Jumor College } Smce P is the foot of
the perpendicular from M; to the chord CD, P bisects CD. Sim-
ilarly, P bisects EF. Since P bisects the two diagonals, CFDE is
a parallelogram. Next since CP - PD = AP - PB = EP - PF, we
have CP = PF. Thus the dlagonals are equal and consequently
CFDE is a rectangle B

3. -'(a) For which posmve 1nteger n does there ex1st a sequence %0
Tlrer s b0 contalmng each of the numbers - S exactly once
and such that k divides z; + z3 + - + Tk for k =1, 2 :

(b) Does there exist an infinite sequenee :vl , L2, . contammg

integer k, k divides 7 + x5 + - + xk

Tan Chee Hau and Kwa Chin Lum ( both of Raﬁ‘les Junzor College)
submitted szmzlar solutions to part (a). Let Sx = 1 + - + T.
Since n | S, = n(n+ 1)/2, we conclude that n must be odd Now ‘
assume that n is odd Then e :

n(n+1)
DRI ol

Sn—l =

Thus z, = (n+1) /2 (mod n— 1) whence Foiles (n+ 1) /2 b‘ecause |

S'n 2+ Ty 1-—S_.1—S —Th" o
(n—l)(n+1)/2—(n+1)/2 (modn 2)

This implies that z,_; (n £ 1)/2 (mod n — 2). Smce (n+
1)/24(n—=2)>n when n > 3, we have z,_; = (n+1)/2 = Tn
if n > 3. Thus no such sequence can exist if n > 3. {

Yorn.= d. ziy="'1, xz—3w3—2andforn—1 a:l—lare
the only sequences Wlth this property. ; Pt

Solution to (b) by Kuwa Chin Lum (Rajﬁes Junior College) Let
zy ' FMThen' I %y, Suppose a sequence Iy, ..., T, has been
constructed so that i | ¢y +-:- + i, t:.=1; .., k. Then z;+

- + xx = mk for some posxtlve 1nteger m. Let p be the smallest

positive integer n such that m + n(k + 1) p, then let zx+1 =p
and we have a sequence such that i | z; +- - +a:,, = 1 k +1.
If not then one can choose ny so that W% '

(m +’no)(k o gt o WA
and  (m+no)(k+1)=-p (mod k+2).

This is always posSible by choosing a large nd :sdo thaﬁ ng=p —-m
(mod k + 2). Then letting zx+1 = (m +no)(k + 1) and zx42 =p

every positive integer exactly once and such that for any posmve i |

TERU TN P, T T

pos1t1ve integer such that z; # p for s = 1,..., k. If there e}usts a>

i




will glve a sequence such that % ] Ty 4+ Tiy 1= 1 k'+ 24

, requlred sequence exists.

- Tan Chee Hau (both of Raffles Junior College). Since () =
‘n'/k'(n k)!, for it to be odd, we must have n = O ¥ O,

'z-—"O, ..,n. We have : ‘
E R n ' ! 2 e
| ah:[—JJ“[zzJJr '=zr~?n-1--‘-21+znzn—1---z2“'r'.‘r‘+zn'

"4 such that T; + i ?é Zu let m be the largest integer such that

Since

- The second solution is due to Kwa Chin Lum and Christopher Tan

prove this we need:

In each cgse, we can extend the sequence | to include p. Thus the

4. Let" n be a pos1t1ve integer. Count the - number of k &
{0 L 5ynf for which (7) is odd. Prove that this number is a
power of 2, i.e., of the form 27 for some nqn-negatlve integer p.

We'll present two solutions. The ﬁrst 8 hy Kzah Han Mao and

where a;, denotes the highest power 2 that divides the integer m.
Consuier the blnary representatmn of k, n— kyn:

k{ - mnxn—i ‘e x!ef' n -k = ynyn—l o yO, n= znzn—l - 20-
We shall prove that On = O +Qn—k if and only if :z:, + y,, =z for

2 |
If :v,+y, =2z fori =0, ., n, then an = ag+an_k. If there exists

:vm+ym i If a:m+ym > Zm, then xm+ym > 1 and there must
be a ‘carry over’ in the addition causing Tm41 + Ym+1 # Zm41-
Thus Tr, + Ym < zm, i.e. ) Tm = Ym = 0 and 2, = 1. This implies
that ' ' -

5 ZnZn_l P Zm > xnxn_l yia .xm + ynyn_l “ e ym.

Znin—1 .- zz 2 Tnly wnxn 17 L1+ Ynnai-:-yi, for i=1,2,.

we have an > ag + an-k. With this the proof of the assertion is
complete. If o, = ax + ok, then z; = 0 implies z; = y; = 0 and
z; = 1 implies exactly one of z;, y; is 1. Thus the number of terms
(%), k=0,...,n which are odd is 2™, where r,, is the number of
ones in the b1nary representation of n.

Junyuan (both from Raffles Junior College). It is easy to notice
that in the Pascal triangle when the entries are taken mod 2,
certain triangles drawn repeat themselves (see figure below). (The
repeating pattern of triangles is known as Serpmskl’s casket.) To




.» (1) (2?’:1) E 1 | (mod 2) for k =1,...,2° -1 six}cé‘: ¢

R

~and eé,ph term of the product is a quotieht of twdo.dd _‘x’iu;mbens as

0B i R L e s % G R e
» q 1 = 2rs‘ s=2 "s —, ~where ¢ =2"s, and s is odd.

(2) Let e 2? - 1 Then from (1)

n+1 0 (mod2) 1fk-—12 ,
SR 1 (mod2) 1f‘kAOn+'1 iy

b ——

(3) Fmr a.ny nonnega,tlve integer p and any mtegef q, let (p) A e

- 0if ¢ < 0or g > p Then it is easy to see that (“H‘”‘) !

(G # (50 ++ (T, This llows readiy rom-

the recursive formula eyl WAL NS IR, P o e,

o

Cry=(2)+0) -
-BE OO

_ which holds true for the. generahzed bmonual coefﬁments as well

(4) Thus for eachk 201, ,n andz—-(l 1 ’k we have

' n+1+k_ _‘n+1+k5', :
DA QR NS R

e B NN R T ] S
‘ =N(k—' z) ( ; 0 )=(z) ,(mod 2).

Also, for each k = 0 1,5 nandi= k+1 n, since 1 < z—k < |

(n+1+k)

i—k+1<- <z<n,wehave =0 (mod 2).

(5) In the Pascal triangle, we. de51gnate the top row as row 0
and increasing the count as we g0 down. From (3) and (4), one
concludes that the number of 1 in row i(< 2P) is half the number
of 1 in row 2P +4. Since for p = 1, there are one 1 and two 1 in row
0 and row 1, respectlvely, we conclude that the number of 1 in row
1 is 27, where r; is the number of 1 in the blnary representatlon
of 1. : : ~

; (5 o ot

v —-———
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lFirst Japan Mathematical Olympiad, 1991 I

Final Round

1. On a triangle ABC, let P,Q, R be the points which divide
the segments BC, CA, AB, respectively, in the ratiot: 1—t¢. Let
K be the area of the triangle whose three edges have the same
length with the segments AP, BQ and CR and let L be the area
of triangle ABC. Find K/L in terms of t.

Five solutions were received: from Kwa Chin Lum and Kiah Han
Mao (Raffles Junior College), Lim Yin and Jason Ying Huwei
Ming (Victoria Junior College), as well as A. R. Pargeter (Eng-
land). We first present Lim Yin’s solution. We have AR/RB =
BP/PC =CQ/QA =t/(1-t). Extend AB to X and AC toY so
that BX = ARand QC = CY. Then AABC is similar to AAXY
since BX/AB =t =CY/AC. So XY || BC and XY/BC = 1+t.
Now let Z be the point on XY such that XZ = BP. Then
ARXZ and AABP are congruent and so AP = RZ. From
XY/BC =1+tand XZ/BC = BP/BC =t, we have ZY/BC =
(1+¢t)—t=1. Thus ZY = BC and consequently, ABCQ is
congruent to AZY C and BQ = ZC. Thus ARZC is the triangle
whose sides are equal to AP, BP, RC. For any AABC let (ABC)
denote its area. Then (AXY) = (1 +t)?(ABC) = (1 + t)2L.
(ARC) = (RXZ) = (ZYC) =tL. So

K =(RZC)= (AXY)— (ARC) —(RXZ) - (2YC)
= (1 +1)2L — 3tL
and K/L =t —t+1.

Jason’s solutixon.‘ - Set up the coordinates with A = (0,0), B =
(b,c), C = (a,0). Then we have R = (bt,ct), @ = (a — at,0) and
P = (at + b — bt,c — ct). Let D be the point so that ACDB is a

parallelogram;.ﬂi Then
AD =AC+CD =14C +RB
=(a,0) + (b,c) — (bt,ct) = (a+b— bt,c — ct).
Thus D = (a+ b—bt,c—ct) and QP = (at +b—bt,c — ct) = AP.

Therefore A BQP has its sides equal to the segments AP, BQ, CR.
Hence ~

b c 1
a—at 0 1
K ' (BDQ) a+b—=bt c—ct 1 g
L (ABC) : b -1 v 3

0.54. 71
a0~ 1




‘Han Mao’s solutzon Let AB = b and ACs c' T];leri (ABC) =
b x ¢|. We also have BQ = BA + AQ = ~b +t¢, CR =

 CA+AR=-c+(1—-t)b, AP = AC+CP—c+t(b c). Thus
,7<BQ+C’R+F - 0. Hence

el ;s' !

MG cl A

£ —|tc—bx (1-—t)b—°)|
vl (t2 ~t+1)

b x | = (£ - t+1)L

2. ‘LetN be the set of a.llposmve mtegers The ma.ps P, q N - N S

are defined as follows ;
p(1) =2 P(2) ,P(3) 4 P(4) Ay P(n) =n lfn 2 5
1) =3,q(2) = 4q(3)—-2q(4)-1 q(n)—nlfn>5
~ (a) There exists'a map f : N — N such that ;f( f(n))

p(n) + 2 for all n € N. Fmd an example of such a map

(b) Show that there does not exist a map g N —> N such
that g(g(n)) = q(n) +2 for all n € N. ,

() Solution by Lim Yin ( Victoria Jumor College), Chrzstopher

Tan Junyuan, Tan ‘Chee Hau and Kwa Chin Lum (all from Raﬁ‘les

t1es

O G o BT
4 ifine=2°0 % y
ks Cibe if m=did
0N o 108 e B B,
n+3 ifn=86.8,...
AT s [ e O RS

Solution (b): Solution by Lim Yin (Victoria Junior College). Also

solved by Christopher Tan Junyuan, Tan Chee Hau and Kwa Chin
Lum (all from Raﬁ‘les Junior College.. Suppose such a functlon g

‘ exxsts ‘Then >
iyt @A

@?n)={83 * "ifn=3

, 4 ifn=4

n+4 ifn>5

Ficb 918) A Dhiowt, - Pt LR
g*(k) = 4(9(3))—95(3) 9(94(3))—9(3)

~Junior College ) The followmg function has the reqmred proper-

4 Bl :

Mt e . NS N PN, =L



Thus k = 3 or 4. If 9(3) = 3, then g(¢(3)) = ¢(3) = 3,2 contrad1c- ]

tion. If g(3) = 4, then 4 = g(9(3)) = g(4) and g(g(4)) = g(4) = |
again a contradlctlon Thus no such function can exist.

3. Let Abea positive integer of 16 digits in the decimal system.
Prove that we can chose some successive digits from A such that
their product is a square of an integer.

Similar solutions by Lim Yin (Victoria Jumor College), Kwa Chin
Lum and Tan Chee Hau (both from Raffles Junior College). Let

B(z, j) represent the product of the d1g1ts of A from the ith digit
to the jth digit, 7 < j. The possible prime factors are 2,3,5, 7.
Consider the numbers B(1, 1), B(l 2),...,B(1,16). We can write
B(1,i) = 2Pi3%5m 7% If there is an i, such that p;,q;,r;, s; are
all even, then B(1,1) is a perfect square If not, then among the
16 4-tuples (Pis @i, 7y 8:),% = 1,2...,16, two must have the same
parity, say (pm,qm,rm,sm) and (pn,qn,rn,sn), m < n have the
same parity, i.e., Pn = Pm;qn — @mTn — Tm, Sn — Sm are all even.
Then B(m + l,n) = B(1,n)/B(1,m) is a perfect square.

4. On a rectangle chess board of size 10 x 14, the squares are
coloured white and black alternately. We write 0 or 1 in every
square so that every row and every column contains an odd num-
ber of 1. Prove that the total number of 1 in the black squares is
even. :

Similar solutions by Lim Yin (Victoria Junior College), Kwa Chin
Lum and Tan Chee Hau (both of Raffles Junior College) and Lim
Chong Jie. Also solved by Kiah Han Mao (Raffles Junior College).
Let the (1,1) square be black. Add up the odd columns and the
even rows. This is the sum of 12 odd numbers so it is even. Now
each black cell appears exactly once in the sum and each white
cell appears either twice or none at all in the sum. Since the sum
is even, the sum of the numbers in the black cells is even, or there
is an even number of ones in the black cells.

(Note: A similar version of this problem appeared as Problem 1

of Ukrainian Mathematical Olympiad 1997. The second solution
published in Medley (Vol. 26, No. 2, December 1999) works for
this case and is in fact the solution presented here.)

5. Let A be a set of n points on a plane (n > 2). Prove that
‘there exists a closed circular disk with two points of A at the two
ends of a diameter and which contains at least |n/3] points of
A. (Note: For any real number z, lz] denotes the largest integer
Q)

No solution was recezved We present the official solution. Let
D be the smallest closed disk which contains all points of A. We
denote the boundary of D by dD. If there are only two points of
A on 8D, then these two points are on a diameter of D and D is
the required disk. If there are at least three points of A on 0D,
then we can find three points P, @, R such that APQR is either




acute-angled or right-angled. If APQR is right-angled, then D
is the required disk. If APQR is acute-angled, let Dy, D2, D3 be
closed disks whose diameter are PQ,QR, RP, respectively. It is
easy to see that one of the D;’s is the required disk.

Georgian Mathematical Olympiad, May 1997

Selected problems ﬁjom the final round

1. (9th Form)> Prove that for any positive integer n, the following
equalities hold:

[+ VAT = [V - VBT = [VERTE.

Solution by Tan Chee Hau, Kiah Han Mao, Kwa Chin Lum (all
from Raffles Junior College) and Lim C’hong Jie. Flrst we have

4n +4n+1>4n»+4n>4_n
= 2n-+1>2\/rz(_n——i—1)>2n
=  4n+2>n+2V/nntD+(@n+1)>4n+1
= Vin+2>vn+vn+1>Vin+1.

i |_\/4n+J [\/‘+\/7TTJ |Van+1].

If there is an integer k such that v/4n+1 < k < +/4n + 3, then
dn+1<k?<4n+3,ie,k*=2,3 (mod 4) which is 1mposs1b1e

Thus we conclude that L\/4n +1} = |V4n+3]. From this the

conclusion follows.

(9th Form) There are 40 participants in a mathematical com-
petltxon Each problem was marked with a +, a — or 0. After
all the papers were marked it was found that no two papers had
the same number of 4+ and the same number of — marks simul-

taneously. What was the smallest number of problems that could

have been offered to the contestants?

Solution by Tan Chee Hau, Kwa Chin Lum, Kiah Han Mao (all

from Raffles Junior College) and Lim Chong Jie. Suppose there
are n questions. If ‘0’ is not ass1gned to any question, then the
number of questlons ass1gned ‘+’ is 4, while the number of ques-
tions assigned ‘—’isn —1i,4=0,...,n. If ‘0’ is asmgned to one
question, then the number of questlons assigned ‘+’ is ¢, while the

number of questions assigned ‘—’isn—1-14,i=0,...,n—1, etc.

Thus the total number of ways of assigning the number of ‘+’, ‘-’
and ‘0’is 14+2+---+(n+1) = (n+1)(n+2)/2. Since there are

I i e £
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3. (9h Form) In the eqmlatera.l triangle ABC, pomts D and

~ let BD = BE = z (see Figure). Apply Menelaus’ Theorem to

‘Since (BEFD)/(AFC) = Q/R, we have

40 students ‘we ha.ve (n+ 1)(n - 2) /2 > 40, which means n > 8.
Thus the sma.llest number of questions is 8. It is clear from the
forgomg discussion that with 8 questlons, the reqmred assignment
is possible,

FE are chosen on the sides' BC and BA, respectlvely, so that
/DAC = LECA. The lines AD and CE meet at a point F.
The incircles of the triangle AFC and the quadrilateral BDFE
have equal radii. Find the radius of these circles if the Iength of
the side of ABC is a.

We present similar solutions by Tan Chee Hau, Kwa Chin Lum,
Kiah Han Mao(all from Raffles Junior College). Also solved by
A. R. Pargeter (England). Let the equilateral triangle be of unit
side. Then the actual answer would be a times the answer ob-
tained in this case. Let the radius of the two incircles be r and

AABD and AABP we have |
TaE N oD e DF EF

AL e e S
1497 BF o sl W BE - (2e
B N e TR T T

The latter also implies that FP = ¥31=2) Let AF = a, then we

have DF = ax = EF and FC = a. For each polygon AB...D,
we denote its area by (AB.. D) Let (BEF) = Q, (AFE) =
(AFP) R, we have

5_1~-x. "d P+Q  1+(P/Q) BF %
RS Ly R BT 7 R e

Thus 4 = % We also have
2(AFC) =r(1+2a) and 2(BEFD)=r(2z+ 2az).
T 1+« 1-2z

o e TR which implies a=3m_1.

Consider the right-angled triangle APF, we have ' AP? + FP? =

T 1. '37159n3 7120012
Z+Z(1+m) =(3a:—1)

&, z(z —1)(5z? = 142+ 5) = 0.




4 v

Since O <z <1, wehave z = (7 2\/_)/5 We are now ready to
calculate r. Since (AFC) is the product of its semiperimeter and

its inradius and also (AFC) = (ABC) we have:

g . ; f Tl

Thus

VJ_;éwi f LVr Vi
r= 3(14_1;)(1':2“) ' 2

mequahty
7 z? +y +z <wy+3y+2za

Solutzon by Tan Chee Hau, Kwa Chin Lum, Kzah Han Mao ( all
fmm Raﬁ‘lgs Junior. College) By co‘mpletmg squa.res, we ,have

z +y2+z <a:y+3y+2z A5 Mo
& (2:1: y)2+(3y +4z 12y 8z)<0

. Thus for a solutlon to exlst

3y +42% ~ 12y ~ 82 =3y ~ 9 +4(z - (e +1)
e =4(z-12+ (3" <12y —-4)
So.i : e .

Thus we need

(z—3)(z+1)<0 and 3y -12y 4<0

ie.,
2—012 ~and y 01234

{

The solutions can now be worked out by cons1der1ng all thé

(10th Form) Fmd all trlples (z,v, z) of mtegers satlsfymg the

i P > n
i Sl S T % - e i

O R S RS-

cases. For example, when (y,z) = (0 0), 2 < 0 and there is .

no solution; when (y,2) = (0,1), z* <1 and P 0 is the orily

‘ solutlon All the solut1ons are:

RERAIT m01)m10)010)(111)@41)g11L
‘(,2’171)’,(01,172% (_111’-2)a (O’ 2: 0), (1»7 2’0)’ (2’ 2’0)1 '
0,2,1), (1,2,1), (2,2,1), (0,2,2), (1,2,2), (2,2,2),
uso)mao)m31)031)@31)@31)
1,32, (23,2, @4,1),




e ;ééznw

5. (10th Form) Determine whether or not it is possible to fill an
nxn table with entries equal to 1,—1 or 0 so that when calculating
the sums of the entries along the rows and the columns one could
get 20 different numbers.

Solution by Tan Chee Hau, Kiah Han Mao,Kwa Chin Lum (all
from Raffles Junior College). In order to have 20 different row
and' column sums, n > 10. The. followmg table gives a solution

Qforn-lO.
N 5 U el (W W et PR
R g Netie Nl - et 9D § ook, BUGHT ) ] a4 |
R (O e I W (T TR )y |
i S o SN S5 | RS | L L T
et 9, (i i T s RS G e GRS
e 5 B RN G S 0 S [T, | R B
{0 ORTD, PP s AV VI R, S (e e Y
Bt K gy R TEATO KGRy s e s o |
TV - T\ <N AP g e N S

For larger values of n, simply put this table anywhere, say the top
left corner’ and enter 0 at the other places.

6. (10th Form) Prove that in any triangle, pR > ZS where
p, R, S are, respectively, the semiperimeter, c1rcumrad1us and the |
area of the triangle.

Solution by Tan Chee Hau, Kwa Chin Lum {both from Raffles
Junior College). Also solved by A. R. Pargeter (England). Let
O and I be the cucumcentre a.nd the incentre. Then by Euler’s

Theorem, e
o 0? = R? - 2'R= R(R 2r) > 0.

Thus R > % and PR3 2P = 25' as required.

7. (11th Form) Two positive numbers are written on a ‘board.
At each step you must, perform one of the followmg :

(1) choose one of the numbers, say a, on the board and wnte
d?vvn e1ther a?orl /a ) | : \

(u) choose - two numbers, say a,b on the board and write
down either a + b or |a ~ b|. How should you proceed

" in order that the product of the two initial numbers wxll
_ ‘eventually be written on the. board? | ¥4

- Solution by Tan Chee Hau, "Kud Ch'm Lum(both from Raﬁ‘les Ju— ;
- “nior College). Let a,b(a >b)be the 1m£1a1 numbérs In each of .
b f,he followmg steps Wnte £ I DTl :

“;’ : ,Lf

|

ot

(1)”- &




a+b 1 1 a-b
2 e b
ST ' b a-ab
a+b a®+2ab+b%* fa—b\2 a®— 2ab+b?

(3)( ) a2bh? ( ab ) a2b?
(4)a +2cv.b-+—“b2 _a,2—2ab+b2 4ab oS ,

T - T T
V(5)Flag = %IZ twice :

(6) write -“Zb-+ ab = b twice
\ ab ab :

gty =

T -

y ,‘Bucharest quamaa J uly 1999 ;'v«:;f

» 8 Deterrmne all finite sets S of at least three pomts 1n the plane 2
which satlsfy the followmg cend1t1on A

_ for any two dlstmct poxnts A and B m S the perpen—
* dicular bisector of the line segment AB is an axis of

; symmetry for S. %} W
i ..5

Solutzon. Let G be the- centre of gra*vxty of the set S Smce the -
perpendicular bisector of the line joining every pair of points is -
‘an axis of symmetry, G lies on the perpendicular bisector. Thus
the perpendicular bisectors meet at a common point G. Thus the

- pointslie on a circle. Let a, b,c  be three consecutive points. Since
the perpendicular of ac is an axis of symmetry, b must lie on it.
Thus the lengths of ab and bec are equal Thus the pomts are the ;

vertices of a regular polygon :

Alternative. solution: One can show easﬂy that the boundary of |
the convex hull of the points form a regula olygon as in the

second half of the previous proof The 1g left'to doisto
-prove that there is no pomt in the 1nter10r Thls can be pro,vexﬁl“vv 4 ‘
by contradiction. s fik I 45 % 1 3 e ARG B
2. Let 1 be a fixed integer, with n > 2. % g st £ A )

(a) Determme the least constant C such frhat the mequahty
J . v - : o Y i 4 » v, ¥
3 . Z 17;93,(:1: +:1:2)<C( Z wi) o 24

1<i<j<n 1<i<n

holds for ol seal h,umyheriS_; z1,. J. T > o

.Y T T -



R Ay 00

: ,)to mcrea.se thé va}ue of F as shown below*

W e | 0 " B Y 3 » 3 ~ a7

o .

(b) For thls constant C’ determine when equahty holds

o Solution: The mequahty is symmetnc and homogeneous, SO we
""ca.nassume:z:1>z2> >xn30and2m,—1 Inthascase

we have to ma;:gxmze the T e A

F(:z:l, ,:L'n Zx,mJ (:Eg + a:z)

Y TR e 1.<g s
Vx, N 3

} Let Tkl be the last nonzero coordmate and We assume that k > 2
- We shall replace &= (:cl, ,$k2$k+1~, O) w1th N

A b { Y i \
” :x'x ""(wla 7xk 17)37k+wk+170 Q)

3 PSRN

'*.chl‘ _k‘
F(a:’) F(“’) s xkxk+1[3($k + $k+1) Z e a’kq-l}

i . z....l "‘,-
T Ak :z:ka:,kﬂ [3(:z:k, - :z:k+1)(1 Ti — ka+1) - :c,c zk+1]
3, 5 wkgkﬂ(wk + Z41)(3 — 4(qu‘+ Ti+1)) + 2Tk Ti1)-

o |

Erom ;™ « Sy o Ly S e
1> +<L‘k+-’Bk+1 (ka +$k+1)+xk+wk+1

it follows that 2/3 > T + T4 1, and therefore F(a:’) - F(:z:) > 0.

After several such substltutlons, we have

F(a:) < F('a bj0, .., 0= ab(e? +b2)
b —(2ab)(1 2ab) < 1 = F(1/2,1/2,0,...,0).

LAhis-Ch= "1 8 ‘and equality occurs if and only if two of the a:, ’8-

are equal (possibly zero) and the remaining vanables are zero.

3. Consﬁer an n xn squax:e board, where n 1s a fixed posmve

 even integer. The board is divided into n? unit squares. We say
- that two different squares on the board are adjacent if they have

a common side. N unit squares on the board are marked in such
a way that every square (marked or unmarked) on the board is
adjacent to at least one marked square Determine the smallest :

.pOSSlble value of N.

Solution. Let n = 2k. First colour the boa.rd black a.nd whlte like

~ a chessboard. We say that a set S of cells is covered by a set M

of marked cells if every cell in S is neigbour to a cell in M. Let
fw(n) be the minimal number of white cells that must be marked




so as to cover all the black cells Deﬁne sumlarly fo (n) Due to
symmetry of the chessboard (n is even), we have

fuln) = folm).

Since black cells can only be covered by ma.rked wh1te cells and :

vice versa, we have ‘ e i

N fw (n) + fo(n):
Place the board so that the longest black d1agona1 is honzonta.l

Now consider the honzontal rows of white cells. Mark the odd cells :

of the first row, third row, fifth row, etc. (The figure illustrates

the case n = 8) Call this set of cells M. The number of cells in .

M ,
2, k(k+1) ;

1124 +k— 3

It is easy to see that the black cells are covered by M Thus g £

g fw(n)<k('°2+1)§,

Now consider the cells in, M N o two of them have a common
. black neighbour. So we need to mark at least lc(k +1)/ 2 black
cells in order to cover M. Therefore

f( )>k(k+1)

Hence

i aden fb(n)+fw(n) k(k+1)

s B ossni - 0h 1 oy

4. Determme all pairs (p,q) of pos1t1ve* mtegers such that P is

prime, n < 2p, and (p — 1)" + L is divisible by np S

lutions we have p > 3. Now assume that n > 2 and p > 3k
Since (p—1)" + 1 is odd and is divisible by n?~, n must be odd.
Thus n < 2p. Let g be the Smallest pmne dlvxser of n From'
ql(p—l)"+1 we have o . |

| X ;

(p— 1)"‘='—1 (modq) and gcd(q, ~1)= 1

Solution. Clearly (1,p) and (2,2) are solutlons and for other so- *y

- But gcd(n,q — 1) = 1 (from the choice of g), there exist mtegers 5

u and v such that un +'v(q - 1) XY whence

p:.—.IE(P—l)“"(R 1)"“1“”-—( et (modq)

aaaaaaa

e S e e e



‘because u must be odd This shows’ q | p and therefore q = Py
Hence n=p. Now : Z

“z ( ():p?'is*‘ii’*’(pf“za)z’v-,(pfz)“)'"

‘ Smee every term in the bracket eXCeﬁt the last is divisible by P
we have p- 1<2 Thusp=3=n. Indeed (3,3) is a solutlon

) g conclusmn, the only solutlons are (1, ), (2 2),(3,3).

-8 Two c1rcles I‘1 and I'; are conta.med inside the circle I', and

are tangent to T at the distinct points M and N, r%pectlvely |

passes through the centre of I';. The line passing through the two.

- points of intersection of I'; and I'; meets I at A and B.. The lines
. MA and MB meet I'y at C and D respectlvely

\ s \Prove that Q’D is tangent to I‘2
Solution: E,We ,,,ﬁrst prove a lemma.

Lemma: Let I'; and I'; be two circles such that one does not
contain the other. Let I' be a circle containing both I';, I'; and
touches I'; at P, I'; at S. Let £ be a chord of I' which is tangent
to I'y at @ and I'; at R, with both circles on the same side of
‘the chord. Then PQ and SR meet at a point M which is on I'.
Furthermore M is on the radical axis of I'; and I's.

Proof: Let O, 01,02 be the centres of I', I'1, I's, respectively.
Produce PQ to meet I' at X. Then it is easy to see that 0;Q||0X.
Thus the tangent at X is parallel to £.-Produce SR to meet I' at
Y. A similar consideration shows that the tangent at Y is also

~parallel to £. Thus X =Y = M. Since £ is parallel to the tangent

at M, we have AS'PQ = 180° — ZQRS. Thus PQRS is cyclic.

- Hence the powers of M with respect to I'; and I'; are equal and
M is on the radical axis of both. This completes the proof of the '

lemma. , \

Let E be the intersection of N A wit_h I's and F' be the inter-
section of N B with I';. From the lemma, and since the radical axis
in this case is the common chord AB, we known that CE and DF
~ are both common tangents of I’y and I's. Thus O;0,, is the perpen-
dicular bisector of CD, i.e., O2C = O2D and éOgCD Z0,DC.
Since CE is tangent to 1"1, ZECO; = £O2DC - £02CD. Thus
CDis tangent to Pg “




6. Determme all functlons f R— R such that

f(w f(y)) - f(f(y)) # 5cf(y) + f(w) = 1

_forallzyER

Solution. Let A—Imf and ¢ = f(O) By puttmg:c—(y 0 we
- get f(—-c) f(c)+c—1 s0c#0.

Tt is easy to ﬁnd the restnctmn f to A Take T & f(y) to W/

- obtain . ~ ,
: c+1

S SRR

Ihe main step is to,show that A A ]R Indeed fqr y= 0, we

"get , R TN

{f(:c—c) f(:c)lrce]R} {c"""f(c)—llxelh} IR"

'becausec#O }}.3/‘ RERR) A1 e A _\? e

(The f0110wmg is. due to Lim Chong Jie. ) W1th th1s yve con-

clude that the gltien functmnal equatxon is eqmvalgnt to the fol- -
: lowmg i1 G RN

i\,‘*‘;r n“' e N ,”«“ “1 A
o g

(9«' % y) - f) +ay + f(w) ~1, forallzye R

_'By puttmg y 0, we get f (0) 2= 1 Rzplacmg Yy by w, we I'Iave

O o A Y

—

P,

b 'y v

S B 8 1“2f(-"3)+33 —1 L f(x)—-l——z-
> QIt is ea.sy t&) check that thls functmn sa;tlsﬁes/the glgen functlonal :
equa:tlon , < , A e k. : ;5
IJ )l( ‘\ \ e i, i R ‘ wu - Y : o | L & | '\- \ :
] A 5‘ : I ol A .S\‘. ‘l. :. " 4 N,]’—r:ﬁ’. ’
o3 AR 4/ s
o i ey O g ) y i ;
AT : p ! ; Lo q >
A \"AI‘\ : i
A\ 1 £ A APV i 3 3
: X e 5
2 = ,1" he . 3
f < 4 l“,-,': )
e o F}«"‘
b ‘ 2 W o § & w,k{\
te .




