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§ 1. The Arithmetic Geometric Mean 

The arithmetic mean of two numbers a and b is defined as the "average" of the 
numbers, namely, aib while the geometric mean is given by vab. The first relation 
we observe from these two means is that if a, bare non-negative, then 

(*) ;-;-<a+b vao _ 
2 

. 

To see that (*) holds, simply observe that 

0 <(a- b? = a 2 + b2
- 2ab = a 2 + b2 + 2ab- 4ab =(a+ b)2

- 4ab. 

This then implies that 

ab < (a+ b)2 
- 2 ' 

which gives (*) since a and bare non-negative real numbers. Identity (*) known as 
the Arithmetic-Geometric Inequality. 

We now fix two numbers ao > 0 and b0 > 0, and define 

and 

Notice that an is the arithmetic mean and bn is the geometric mean of an- 1 and 
bn-1, respectively. 

Example 1 

If we set ao = bo = 1, then the above iterations give 

a1 = (1 + 1)/2 = 1, 
b1 = v'f = 1 

a3 = 1· · · 
b3 = 1· .. 

So, an = 1 = bn for all n. In general if we start with the same a and b we always 
obtain the result an= bn =a= b. 

Example 2 

Consider now the more interesting example. Set ao = 1, bo = V2. Then we have 

1 1 
a1 =- +- v'2 

2 2 
1 1 1 a2 =- + _ y'2 + _ 21/4 
4 4 2 

a3 = ! + ! y'2 + ! 21/4 + ! . / ( !:_ + ! y'2) 21/4 
8 8 4 2Y 2 2 

c!+!v'2+!21/4). lc!+!v'2) 21/4 
4 4 2 v 2 2 

One sees immediately that our numbers an and bn get very complicated even 
for small n. At this point, everyone would have thought that the numbers an and 
bn are uninteresting and "move on with their life" except probably the famous 
mathematician Carl F. Gauss. Gauss calculated several different sets of {an} and 
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{ bn} using different initial values ao and bo and noticed that as n gets large, an and 
bn seems to "stabilize". So, for example, in Example 2, we have 

n 
1 
2 
3 
4 

an 
1.20710678118654 75244 .. . 
1.1981569480946342956 .. . 
1.1981402347938772091 .. . 
1.1981402347355922074 .. . 

bn 
1.1892071150027210667 .. . 
1.1981235214931201226 .. . 
1.1981402346773072058··· 
1.1981402347355922075 ... 

So, Example 2 shows that an and bn approach the SAME LIMIT 1.198 · · · as n 
approaches infinity. In the language of limits, we say that 

lim an= lim bn = 1.198140234735592207 · · · . 
n-->oo n-+oo 

After observing this phenomenon, Gauss succeeded in showing using(*) that the 
limits of the sequence {an} and {bn} exist and they coincide. In other words, there 
exist a number M such that an and bn are both close to M when n is large. Since 
M depends on the initial values ao and bo, Gauss defined the limit Mas a function 
of two numbers, namely, M := M(a, b) where ao =a and bo =b. So our discussion 
above shows that 

lim an= lim bn = M(a, b). 
n-+oo n-+oo 

This number M(a, b) is known as the Arithmetic-Geometric Mean. 

§ 2. Two basic properties of the Arithmetic Geometric Mean 

We now take a closer look at some of the elegant properties satisfied by the AGM 
M(a, b). First, notice that 

This is because a1 and b1 may be treated as the initial value instead of a and b and 
the limit lim an =lim bn are not affected. So, we have the relation 

(2.1) M(a,b) = M (a;b,v'ab). 

Next, notice that if we start with a* = ca and b* = cb, with c > 0, our sequence 
would be 

* a+b * ~ a 1 = c-
2
- = ca1, and b1 = cvab = cb1 

and in general, we have 

In other words, a~ tends to the product of c and the limit of an, namely, 

lim a~ = cM(a, b). 
n-+oo 

~f-M-11'~ 
""' 17 0 t I ~ 

~~~=:-.--.--.----------------------------• M E D L E Y 
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But by Gauss' definition of M, 

lim a~= M(ca, cb). 

Hence, we have the second relation, namely, if c > 0, then 

(2.2) M(ca, cb) = cM(a, b). 

Relation (2.2) shows that 

(2.3) M(a, b) = aM(1, b/a). 

Applying (2.3) to (2.1), we immediately deduce that 

a+ b ( 2.;r;Ta) aM(1, b/a) =-2-M 1, 1 + b/a , 

which implies that 

(2.4) M(1 ) - 1 + X M (1 2ft ) 
,x 2 '1+x ' 

where x = bja. This is clearly an interesting relation if we treat M(1, x) as a 
function of x. Gauss realized the beauty of this identity and together with his 
observation that 

1 
and 211 1 - dt 

1r o v1 - t 4 M(1, y'2) 

are equal up to a total of 11 decimal places, he was able to show, using (2.4), that 

(2.5) 1 = ~ {77: /2 1 dt. 
M(1, 1- x 2) 1r Jo V1- x2 sin2 t 

( 
2 1 ) -

1 

(Note that - f0
1 

dt = 1.198140234735592207 · · · .) 
7r v1- t 4 

At this point, let me quote Gauss' comments extracted from his diary: 

this result {(2.5)) will surely open up a whole new field of analysis. 

Gauss was right and this new field of analysis is now known as the theory of elliptic 
functions. 

§ 3. A sketch of the proof of (2.5) 

Gauss' original proof of (2.5) was rather complicated. He established (2.5) by 
assuming that 1/M(1, v1- x 2 ) is an analytic function in x and hence, has a power 
series expansion. He then established the coefficients of the power series using (2.4). 
I would like to present here a simple proof of (2.5). The most non-trivial technique 
is probably integration by substitution. 
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Define 

Then, substituting t := b tan(} yields 

Tab--1100
. dt 

( ' ) - 7r _ 00 ..j(a2 + t2)(b2 + t2) · 

On substituting u := !(t- ab/t), we find that 

This means that 

where an and bn are defined as in Section 1. Since an and bn tend to M(a, b) as n 
gets large, we may conclude that 

T(a, b) = T(M(a, b), M(a, b)). 

But 

1 1100 

dt 
T(M(a, b), M(a, b))= M2(a, b) 7r -oo 1 + (t/M(a, b))2 

1 
M(a,b)" 

Therefore, 
1 

M(a, b) = T(a, b). 

Substituting a = 1, and b = v'1 - x2 yields 

1 = ~ 17r/2 1 
-:-:-:-:----r====;;;::- dt' 
M(1, v1- x 2 ) 7r o y1- x2 sin2 t 

which is (2.5). 

§ 4. Binomial Theorem and Hypergeometric Series 

The binomial theorem states that if n is an integer then 

where 

(
n) = n! = (n-k+1)(n-k+2)···n. 
k k!(n-k)! 1·2···k 

~t.M<'f)t 
~y 'r> 
< 1~ 
$ r ~ 

==~~==~---------------------------------- M E D L E Y 
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We now introduce the notation 

(4.1) (a)rn := (a)(a + 1) ···(a+ m- 1). 

Then with this new notation, 

Note that although the symbol ( ~) makes sense only when n is an integer, our 

notation (4.1) makes sense even if a is not an integer. Thus, we may rewrite our 
binomial theorem as 

Note that when a is an integer, the sum is finite and so, we obtain our original 
binomial theorem. The above allows us to have a series expansion for (1- u)a even 
if a is not an integer. 

Example 3 

(1 - u)-112 = £= (!)kuk. 
k=O (1)k 

Now, applying the above with u = x2 sin2 B, we find that 

Therefore, 

- = - ...2....1£. sin 2 k (}d(} 
21-rr/2 d(} 2 00 ( 1) (1-rr/2 ) 
7r o V1- x2 sin2 B 7r ~ (l)k o 

Upon using the well-known integrals 

sin2k (}d(} = 7r 2 k' 
1

-rr/2 (1) 
0 2 (1)k 

we conclude that 

(4.2) 
21-rr/2 d(} 00 (1)2 
_ =:L~x2k. 
7r o · V1- x2 sin2 B k=O (1h 

The function on the right is denoted as 2F1 (!, ! ; 1; x 2). This is an example of the 
Gaussian hypergeometric series. The general definition of the Gaussian hypergeo­
metric series is given by 
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~ (a)k(b)k zk 

2F1 (a, b; c; z) := L.....t (c)k kf' 
k=O 

At first sight, this may look strange. But one could easily verify that 

and 

(1 + z)a = 21!1 (-a, b; b; -z), 

arcsinz = z2F1 (~, ~; ~; z2), 

arctan z = z2F1 ( ~' 1; ~; -z2) , 

ln(1 + z) = z2F1 (1, 1; 2; -z). 

The hypergeometric series is a very important class of special functions and from 
the above, it is certainly a generalization of the functions we know. Note that we 
are led to this function by a simple consideration of the arithmetic and geometric 
mean! 

I end this Section with an interesting identity, namely, 

Note also that by the idenfication (4.2), we are actually evaluating 1/( V2M(1, V2)) 
on the left hand side. 

§ 5. A transformation formula for 2F1(~, ~; 1; z) 

We have found in Section 4 that 

-r=======~- F ·1·x2 217r 
12 

d(} ( 1 1 ) 
- - 2 1 -, -, ' . 
7r o V1- x2 sin2 (} 2 2 

On the other hand, we found in Section 3 that 

217r/2 d(} 

7r o J 1 - x2 sin 2 (} 

1 

M(1, .J1- x 2)' 

or upon letting x = .J1 - t2, 

1 ( 1 1 2) 
M(l, t) = 2F1 2' 2; 1; 1- t . 

Now, M satisfies the transformation formula (2.4), namely, 

M(1 t) = 1 + t M (1 
2Vt) . 

' 2 '1 +t 
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Hence, 2F1 satisfies 

which is indeed an elegant transformation formula. If we set t = (1- s)/(1 + s), 
then we obtain 

1 1 1-s 1 1 2 ( ( )2) ( 2F1 2' 2; 1; 1- 1 + 
8 

= (1 + s),F1 2, 2; 1; s ) . 

Now the expression 1- (1- s)2 /(1 + s)2 is a very interesting expression. I will 
end my talk with the following new result, which is related to our topic today : 

1 
Let ko = 0 and so= J2' Set 

Sn = 1- (
1- Sn-1)

2 

1 + Sn-1 

and 

kn= ( 
2 

1
)

2 

{2n-1(1-Sn-dsn-1+kn-1}, 
Sn-1 + 

then k:;; 1 tends to 1r quadratically. 
The following shows the convergence of kn: 

n k;; 1 - 1r 

1 0.3761· .. 
2 o.l189 ... x 10-2 

3 0. 7987 .. · X 10-8 

4 0.1905 · · · X 10-18 

5 0.5582 · · · X 10-40 

6 0.2430 · · · X 10-83 
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Remarks : Most of the materials in this article are from [1]. It is the author's 
hope that the readers will be motivated to read [1] (which happens to contain many 
charming identities) after reading this article. 
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