, oblems of the 1128 Nordic
Mathematlcal Conte;st. Apru 1998, First Japan Mathematical
Olympiad, 1991, Georg;an Mathematlcal Olympiad, May 1997,

ese were published in the
lems and solutwns of the
o MQapore International Mathemat"
. Seléction Test 1999/2000 The read;: :

Sience Drive 2,
Singapore 117543 or by
mail to mattayts@nus.edu.sg.




12th Nordic ,‘Mathe;matziqal‘ Contest April 1998

1.  Find'all functions f from the rational numbers to the rational
numbers satisfying

flz +y) o4 € y) = 2f(ﬂﬂ) +2f( )

for all rational z and Y.

2. Let C; and C; be two circles which intersect at points A and B.
Let Mi be the centre of C; and M the centre of Cy. Let P be a point
on the line segment AB distinct from A and B so that |AP| # |BP].
Draw the line through P perpendicular to #/; P.and denote by C and
D its intersections with Cy (see figure). Similarly (not drawn in the
figure), draw the line through P perpendicular to M, P and denote
by F and F its intersections with C5. Prove that C, D, E and F' are
the corners of a rectangle.

B (a)k For which positiv;e integer n does there exist a sequence
Z1,...,Tn containing each of the numbers 1,2,...,n exactly once and
such that k divides 1 + 2 + -+ + zk for k - 1 2

/(b) Does there exist an infinite sequence zi,z3,... contammg
every positive integer exactly once and such that for any positive
1nteger k, k divides ¢ + 2o+ -+ + xx7?

v - 4 Lét n be a positive integer. Count the number of k € {0,1,...,n}"
. for which (}) is odd. Prove that this number is a power of 2, i.e., Lot
-‘ "+ <the form 2” for some non-negatlve integer p.

A\

| First Jgpan Mathematical Oiympiad, 1991

%

fF,lnal Round SN aR S L i RN S

On a trlangle ABC’ let P Q, R be the pomts WhJCh d1v1de the
segment BC, CA, AB, respectively in the ratio ¢ : 1 ~ t.. Let K be
-y thearea of the tna.ngle whose three edges have the same length with.
Aty the segments AP, BQ and CR-and let L be the area of tnangle ABG
./ Find K/L in terms of t.

7 f 1 i




2.  Let N be the set of all positive mtegers The maps p,q : N — N
are defined as follows:

p(1)=2,p(2) = 3,p(3) = 4,p(4) = Lip(n) =n if n > 5.
9(1) =3,4(2) = 4,9(3) = 2,9(4) = Lig(n) =nifn 2 5.

‘(a) There exists a map f: N - N such that f( fn) = p(n)
for all n € N. Find an example of such a map f s

~(b) Show that there does not exist a map g : N — N such’ that
9(9(n)) = q(n) + 2 for all n € N.

3. Let A be a positive mteger of 16 d1g1ts in the decunal system. -
Prove that we can choose some successive digits from A such that
their product is'a square of an mteger

‘"4,  On_ a rectangular chess board of size 10 x 14, the squares’ are
coloured white and black alternately We write 0 or 1 in every square
so that every, row and every column contains-an odd number of 1.
Prove that the total number of 1 in the black squares is even.

5. Let A be a set of n(> 2) points on a plane. Prove that there
emsts a closed circular disk with two points of A at the two ends of a

any real number z, Lx] denotes the largest integer < x.)

| Georgian Mathematical Olympiad, May 1997

Selected problems from the ﬁnal round

1. (9th Form) Prove that for any p051t1ve 1nteger n, the followmg
equalities hold; : ; : ;

[VA+ VAT = [VInF T) = |van ¥ 3| = |VinT3):

2, ' (9th Form) There are 40 participants in a mathematical com-

petition. Each problem was marked with a ‘+’,.a ‘=’ or ‘0’. After
all the papers were marked it was found that no two’" papers had the '
same number of ‘+’ and the same number of ‘—’ marks simultane-
ously. What was the smallest number of problems that could have
been offered to the contestants?- '

are chosen on the sides BC and BA, respectively; so that ZDAC =
£LECA.! The lines AD and CE meet-at a point. F. The incircles of the

#the radius of these c1rcles if the length of the side of, ABC’ is a.

(10th Form) Find all trlples (:1: y,z) of 1ntegers satlsfymg the
mequahty
a: +y +z <:cy+3y+2z

AR UA S e

diameter and which contains at least |n/3] points of A. {Note: For

3. (9th Form) In the equildteral triangle ABC points D and E'" /'

triangle AFC and the quadrilateral BDFE. have equal radii, ‘Find - ;



5. (10th- Form,Determme waheﬂ}er ‘Qr not it is posmble to ﬁl an
x n jc:@,ble with entries equal to 1, —1 or 0 so that when calculating
S suIn of the eenﬁnes alang the roWs ami“ the columns one COuld g@t ‘

’5,

rlangle pR > 2.5’ where p,R S"

: ‘)g‘Pr?:rve tha in
umi'adms and the a,réa of thé

res;fectlvely, the Sexmperuneter, cm;

are 1wéritteﬁ op ‘a board At
!fol;lowmg o

(u) choo§e WO’ um‘bers, say a, b;~a eady vmtten on Ehe board
i Tite No;vn gxthe xan«k b-or ¥a - b{ How shmxldﬁ.iyou
/ th

iextemai hisadin of Bhgle A
of tnang%e ABC at B, and F is the foot of. the
%Pi‘ove thaff 2A,F AB AC’ ’

iic meets the mrcum

i’:I
perPfénd}cu“lar ﬁ 611; ¥

om E ongio AB

ff Th&e are n bTue pomts &nd n red p ) nts 611 a str&aght hne Prove
hat, the sum ofﬁgll distances bgtween pagrs of points of the same colom :
less than or eQual to’ i:he sum ef all dlstanmsbefween palrs of points

W % ‘Ina trlangleABC ZC = 66

ha Zl/pq 1/"24
whx}:h satlsfy 0



40th International Mathematical Olympiad |

Bucharest, Romania; July 1999. Day 1

1. Deétermine all ﬁmte sets S of at least three pomts in the pla.ne
- which satisfy the followmg cond1t10n

for any ‘two dlstmct points A and B in'S, the perpendlcular B
bisector of the line segment AB is an axis of symmetry for
8.

2. Let n be a fixed inteéer ;with n . b
“(a) Determine the least constant C such that the 1nequal1ty

Z :czmj(a: +x2)<C( Z xz)‘l k

1§i<j<n L 1<Kign

holds forﬁaH‘ real numbers xi, | :cﬂ> 0. "3 e

3. Consider an n x n square board where nisa ﬁxed even positive
. integer. The board is divided into n? unit-squares. 'We say that two
| _ different squares on the board are adjacent if they have a common
e - side. N unit squares on the board are marked in such a way that.

. 'Day 2
4. Determine all pairs (p, q) of positive mtegers such that p is prime, o
n < 2p,and (p— )" +1is d1v181ble by nP 1. ~

5. Two circles 1"1 and 1"2 are contalned inside the c1rcle F and LNy

1ntersect1on of Iy and I‘2 meets T at A and~~»~B; The hnes M A and '
MB meet I'y at C' and D, respectlvely SR

Prove that C’D is tangent to I‘2 %
6. Determme a.ll functlons £ RS R such that

kkkkk

fla—fly )) £ (y))+xf( )+f(fr)—1

for all z, yER : ‘i, AN N N Jio
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| ,Eleventh» Irish Mathematlcal Olymplad May 1998
| 1. Show that 1f Tisa nonzero real number, then -

‘ Szmzlar solutzons by Chan Szng Chun, S. Thzagarajah Lzm Chong Jie

b s (Temasek Junior College), Kwa Chin Lum (Raffles Junior College)
 and Tan Chee Hau (Raffles Junior College ). Also solved by Colm Tan
Wezyu (Raﬂ‘les Instztutzon) N 3 >

A\ x9#¢3+‘1

T 0N , : &
(:r +w +1)(:1:3— 1)2 S i e~

N Catn a1 O

§ 2 Cozd BN

12‘»._

'''''''

L

S \‘J2’. ,P isa pmnt 1ns1de an eqmlateral trlangle such that the distances :
“from P to the three vertices are 3, 4 a.nd 5, tespectlvely Find ‘the SRt
area of the tnangle > T : . "

' Solutzon by Chan Sing Chun Also solved by Kwa Chin Lum, Tan. 3
.+ Chee Hau(Raﬁ‘lcs Junior C’ollege) and C’olm Tan Wezyu {Raﬁ‘les In-§
0 “stitution). y N

: Let the leﬁé“h of the'side of the equllaterai triangle ABC be a. Con— € o

%, gy Btruct, an equllateral tnangle BPD with side equal to 4 as’ shown
v, (- Since LABC = /PBD = 160°, we have ZPBC = AABD |
. _gether 1th PBy= DB BC ﬁ BA, we have NPBC ="AD, A”
" Therefore PC'= DA = 5 whence AAPD is right angled at L. and
,AAAPB = 150° Apply the dosme rule to’ AAPB we have

e _ a? —)3 +42—24cos150°'—25+12\/—

; ‘ Th'us .the area is (36 +25\/_)[4 i -
o f :{\; : s ;;;‘ ) {'¢
bl % RS \ i e
il _,&u;\ B, 90 r ) l




- 3. Show that no integer of the form Zyzy in base 10 (where z and y
are digits) can be the cube of an integer.

' Find the smallest base b > 1 for which there is a perfect cube of the
form Zyzy in base b.

Similar solutions by Tan Chee Hau (Raffles Junior College), S. Thia-
garajah. Also solved by Kwa Chin Lum (Raffles Junior College) and
Colin Tan Wezyu (Raffles Instztutzon)

The mj;eger a:yzy in base 10 can be represented by 1010x + 101y =
: 101(10:1: +19),0<z,y<9. Since 101 is a prime number, the number
TyZy is a cube only if 10z + y is divisible by 1012." But this is not
possible. So ZyTy cannot be a cube.

~ In base b, the number is (b+ b%)z 4 (b2 + 1)y = (b> + 1)(b:c + ),
0<:cy<b—1 If 2+ 1= pips...p, Where p;, i = 1,...,n are
distinct primes, then

:
i
|
i
|

zgzy = (b2 +1)(bz +y) < (b +1)° s p"{pg Ly

Thus ZyZy cannot be a cube. Therefore for Tyzy to be a cube, b% +1
must contain a square factor. By an exhaustive search the smallest b
. such that b% +1 contains a square factor is b = 7: b2 41 = 50 = 2 x 52

/ We see that 50(7x + y) is a cube when z = 2,y = 6 Thus 2626 in
' base 7 is a cube and the smallest such b is 7. : ‘

4. Show that a disc of radius 2 can be covered by seven (p0531b1y
overlapping) dises of radms 1.

Solution by Lim Chong Jie ( Temasek Junior College) and Tan Chee
Hau (Raffles Junior College).

First we use 6 discs whose diameters are the sides of an inscribed
regular hexagon of the disc of radius 2. Then place the seventh disc
of radius 1 such that its centre coincides with that of the d1sc of radius
2. Then the seven discs cover the disc of radius 2.

5. If z is a real number such that 2 — z is an integer, and, for some
n > 3, " — x is also an integer, prove that z is an integer.

Solution by Kwa Chin Lum, Tan Chee Hau(Raffles Junior College).
| Let 22 —2 = k € Z. If kK = 0,.then £ =/0or, ¢ = 1 and thus «
is an integer. So we suppose that k > 0. Then, 2% — 22 = zk and
so £3 = (k +1)z + k. In fact it is easy to prove by induction that
1 ™ = amx + by where a,,, b, € Z and that a,, > 1 if m > 3. Thus
d z" =z = (an — 1)z +b, € Z. It then follows that z is rational since
| an — 17 0. Let xz = r/s where r and s are coprime integers, with
} s #0. Thenz? =z = r(r—s)/s® € Z. Since r, s are coprime, we have
| 8 | (r — s) which implies s | , forcmg s= #1. Thus z is an integer.
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- 6. Fm,d all posmve mtegers n that have exactly 16 posmve 1ntegral
| IR d1v1sors dl,d2,,.'. dm such that

% il 2% 5 N e Iy b T O
L A[";‘,ii‘ dz e ) < d13 b TL, uand dﬁ = 18", d,g = dg = 17.
; » s P J ,«@h - 5 o : 7' V‘
Sk Szmzla[' solutzons by Tan Cheé ﬂa‘u (Raﬁées Jumor College), Kwa
- Chin “Lum_(Raffles Junior College), S. Thiagarajah. Lim Chong Jie

S £

(\
%

\ ¢ Tema.sck J'amor Coﬂege ) also. pmmded a partia ial solution. 'Note that
f; ”‘.‘ > Lifn = p1 'p3? . .. pe¥ where P1,:. ., Pk are distinct primes a,nd. a; are
3 nozzegatwe mtegers then n has (gl -Hl)(az T (ak 4 1) positive

_divisers. ‘Thus n must be of the form P’ P1p3, PiP3, plp*ng,— or

T i p1p2p3p4z,; where p;’s are distinct primes. " Since 18 has six divisors:
‘wehaved;,:idb 2d3—»—3d4—6d5?~‘9 —18and‘
A the third the last form are ruled out. Thus, we have.
ot o =237 n—;2 pv\iheteym‘apnme largQ‘ ‘than 18.
ey 7 It is easSr to check t.hatz in the ﬁrs‘%’case, the given conditions. will not’
?’ “” fead bQ, satis gd Thus'n = 2- € now know another two d;w,soﬁs
o ok 27, 54. ,JflS <p <Q7 thgnd7 ‘= p, dg = 27, dg = 2p and
R é 17 imply p= 22. Thlgs t}nswdmpos&ble. 27 < p <54,
¥, 4 \tHen dr = 27,ds = p,dg dg = 54 and dg'— -dg = 17 imply p = 37 I
" p'> 54, then dr = 27,ds = 54,dy = p, Thus dg ~ dg = 17-implies that
1 ope 7L 3‘ \Eg;he two pmxblezﬁy@ of ﬁ(areﬁ 3%.37and 2- 33 % ot
iy 7” Pprove ﬁ;kga‘t if &q b, c a.re po%"ihve reﬁl}xﬁmwfs, then:*« SR .,“

. g N ;! ._\4 * ‘/ 3 Ay
‘}‘:,1 5, » D 4‘_’:‘_ y ( ‘\,r, ‘1 e -2 ‘ g q ’ Y » "

- L =3 ot A TRILY
1 v P \

OV : G
‘,‘ " \ . ,':.' F N AN “ 1 at 1 V" “1 g A el T |
HANT AL T e e ST
T ),’ﬁ ,.:*';‘:f’ 'a+gb+b e { +b«+_h+c1— +u‘) s “1)

fx'lj; F ., 5 el . - 2 :‘\;‘,f R
- ) A i 1 3 1 ¥ s ?J lJ 1‘\ ': 1 7"':‘\ {f_; ,’_‘ & i
\ S R e e i5idd
ap+3“‘ b+c+c+a, 2‘( o b T *) REETE S
T AT IS SR
3‘*« Y 4 X., "v-—‘\lk 74;{ _‘- A N

‘“‘*%‘J

S¥mﬂq .;g;lutzodq 3y»16'han Sw C?zdn, Tan Chee Hau (Rdﬂl'es Jumor
2 ‘; Call,? ’ )§a1th(ﬂ)a Chin Lum {Raﬁ%s _Junior College). = Also solved
£ _/by“Lz 1 Chong Jie (Temasek Junior aC’oll ege) and C’olm Tan We:yfr '
‘ ;(Raﬁ‘les Ins tution) Vsmg AM, >H M we ha,ver & O ‘
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' The second inequality then follows.

(Note: Given n .positive real numbers ay,:..,an, their arithmetic

mean (AM) is (a1+- < ++an) /n, their harmomc mean (HM) isn/(a7*+
) It is well known that AM > HM.)

8. Let N be the set of natural numbers (1 e., the positive mtegers)

(a) Prove that N can be written as a union of three mutually disjoint
sets such that, if m,n € N and |m — n| = 2 or 5, then'm and n
are in different sets.

(b) Prove that N can be written as a union of four mutually disjoint
sets such that, if m,n € N and |m-n| = 2,3, or 5, then m and n
are in dlfferent sets. Show however, that it is 1mposs1ble to write
N as a union of three mutually disjoint sets with this property.

Solution by Kwa Chin Lum (Raffles Junior College). Lim Chong Jie
(Temasek Junior College) and Tan Chee Hau also obtained correct
solutions to (a) and the first part of (b). (a) For each i =0, 1,2, let
A; = {3k +1i:k € N}. Then Ay, A;, A2 have the desired properties.

(b) For each 7 = 0,1,2,3, let A; = {4k +¢ : 'k € N}. Then
Ap, A1, Az, A3 have the desired properties. For the second part, we
prove it by contradiction. Suppose P,Q, R are three sets with the
given properties. Thenif 1 € P, we have 1+2=3,1+3=4,1+5=
6 ¢ P. Since 4 and 6 are in different sets, we may assume that 4 € Q
and 6 € R. Also 3 and 6 are in different sets. So 3 € Q. We now
consider 2, 5 and 7. We know 2 and 5 are in different sets, as are 2
and 7 as well as 5 and 7. Now 2 ¢ @ since 4 € @ and 5 & Q since
3€ Q. Thus 7 € Q. But 4 and 7 cannot be in the same set. Thus we
have a contradlctlon :

9. A sequence of real numbers T, is defined recurszvely as follows:
xg.and z, are arbitrary positive real numbers, and

Eiyal= — e e by QLR
n b

Find I1998-

Solution by Kwa Chin Lum (Raffles Junior College), Tan Chee Hau
(Raffles Junior College), Lim Chong Jie (Temasek Junior College).

Direct computation shows that zo = (1 + z1)/Zo, z3 = (1 + zo +
z1)/(®oz1). After a few more terms, we have z5 = 2o, ¢¢ = z1 and
so on. This suggest that s ey f@r n 2 0. ThlS can be proved
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i iy A tr1a:ngle ABC has pomtlve mteger 31des, LA %= ;‘MB and
H 5 ZC > 96" Find the mum’hum Ieng’th of the *penméter.

i % © Solution by Kwa Chin Lum (Rajfies Junior C'ollege) A[so ,solved by
=~ Tan Chee ‘Hau (Raﬁ‘ies Junior Gallege) ‘

\ Wlth“the usuaLnotatgon, since ZA ot 2AB we have by the sine ruie,
¢ 400 Saf sin' Ay = b/sin B, Thus a/b = 2cos B. But LA+ /B < 90°. Thus
/B < 30°. ‘Hence we have 2b > a > \/_ bor 462 > a2 > 352, Using

 the fact that A + B & 180° ‘and A ‘*B B we also have, g

A ‘ Lu‘\‘ "%,, ‘ ‘ v .
e doogn, RRITNAS T DR sm(A ¥ B) sm(A B) = smBsmG
5 g™y R . 4 4
b = sin?A- sm B—smBsmC Wil S 5 |
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o e (Chan Smg Chun OEServed that th13 argument is revers1ble and in fact
we have VA=2/Bif and only if a® < b® = bc.) Hence b | a®. If b
“is a product of dlstmct prlmes, then b | @® implies that b | a. Thus
4. a2>2b,acon tradiction. So b is not a product of distinct primes. The :
, _perimeter is ) = a+b+c= (a® + ab)/b. Thus we want to minis
| p with integers a, b satisfying 4b% > a* > 3b% and b'| a2 The ﬁrst _ew :
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There doeé not, enst an arlthmetlc progressmf
numbérs COntmmng eieactly n mtegers.

Solutzon by Lzm Ym ( Victoma Junior C’allege) Iso solved by Chrzsto-
Y (Raﬁa Jumor Coilege) Fu'st note that integers
occur at ,regular" intervals in an. arlthmetac progression. Suppose in
an anthmetw 'prog,ressmh ‘of 1999 terms, there are n mtegers, and-
between two successive integers there are d ndmn%egers Suppose fur-
ther that th,ere isa teta.f ef e nbnmteger terms a.t both ends of the

: "hﬂs*/we ceni:lude tﬁat if [1 99]13 a p 31b1,e vé}]{ze of n th:en, S0 is
I_lgggj o+ 1, Hence the answer is. ngggjl &2 2,wwhere d is f:he 1argést
nuﬁber; such that i}fglg _r —& j =

'1)] = ¢ +3, then/1999 = dq—‘}—’ (d—
uanj‘es that q 3(d—~ )+s—r 2 2(d

be a §equence of r’ea.l; riumbers satlsfygng 'a,,+J §
’1 e 2R Pme that " 1




“ Then
r { —- bl + (bl + b2) + o g (b1 + a*x -b bn—l) el “*1
o “""*%1 P (b1 + bz) + o (b1 o u+ b,,;.l) + (a1 Fo a,,_l)
A = e & ﬂ-1 gl
2 2(a1 & +a,. D)= z(a,+an-,) > (n— 1)a,,
- ¢ 1=1{ i

Thxs 1mph“ ,,bl + b hn > and the proof is complete.

L =

i 3 Let T; and Ty be two circles mtersectmg at P and Q. The
gmmon tangent closer to P, of I'; and I’y touches I') at A and I'; at

p The tangent of I'y at P meets- I at C, which is different from P
% a.nd the extensxon oﬁ AP meets BG’ at R. Prove that the cn-cumcu-cle
“QPBG is cycm: on Pz, AQPC’ AQBC Since . CPis el S LT

tangent to [, ZQPC = ZQAP, Thus AQAP £QBC.
and we. concIude that A B, R, Q ‘are conoychc T

o Let APAB“%: o and APBA 8. Since AB. is a com-
-+ ' <“.mon tangent to T; and I'5, we have AAQP = a and

© | ZPQB = (3. Therefore, since A, B, ‘Q, R are concycllc,
| ZARB = ZAQB,= a +  and ABQR . /BAR = a."
“Thus ZPQR = a + 3. Since ZBPR is an extenor angle -
- ofl AABP, /BPR = a+f. ‘Thus ZPQR » /BPR =
" /BRP. So the crrcumcucle of PQR is tangent to BP
a.nd BR., ‘i

S 2% i)e‘tem;me %llzpaus (a bj of mtegers w1th the property that the :
: numbérs‘%a +4b and b2 +4a are- both perfect squares

{ "Qﬁ‘iczal Solutzon. Wlthout loss generahty, assume’ that |b| < al. If
¢ b =0, then a must be a perfect square. So (a, b) = (Ic2 0)isa , soluti
PR L eachk € 2. Now consider the case b 75 0 Smce a +4‘b isa pér“feetﬁ

e squa.re the quadrat;c equatlon i LY P

»i 4

4 - i (‘»~ i
>2% L o b L
ot xtbag b= O N R
‘?R 21 ; [ ?R Qg, 3 i—; iy 3 1 1a v’_‘ A5

has two nonzero mtegrzﬁ solutlons xr, Z2 Wlth |z1| < |a:3| We have
xI +a:2 = —a and xlmz = F;om%h&e Weha b




(1):z1, =2 Substltutmg z; = 2 into (x), we have b 2a + 4. So
b2 +4a = (2a+4)? +4a=(2a+5)*-9. Ifis easy to see that the
solution in nonnegative integers of the equation z2 — 9 = 32 is (3,0).
Hence 2a + 5 = +3. From this we get (—4, —4) and (-1 2) w1th the
latter discarded because of the CODdlthIl |a| 240k T ~

(2) z; = —2: Substitution gives b = 4 — 2a. Hence, b2 & '
(2a—3)? + 7. The nonnegative integer solution of z2 +7 = y? is (3 4).5
Thus 2¢ — 3 = £3. From this we get the solution (3, b

(3) By ="1: ' Substitution yields b = a + 1. Hence b2 + 4a

o (o 3)2 — 8. Proceeding as before, we get the solutlon (—6,—5).

(4) z; = —1: Substitution yields b = 1 — a. Thus a? + 4b =

(a—2)* and b* +4a = (a + 1)2 Consequently, we get the solutions
btk 1 5 8), keZ

Solution by Tay Kah Keng Raﬁ‘les Jumor C’ollege) wzth gaps filled by-
the editor. Suppose that a? + 4b = m? and b? + 4a = n? where m
and 7 are nonnegative integers. We havea=mandb=n (mod 2).
Thus we can write m = a + 2z and n = b + 2y for some mtegers z, y

Wealsohavea—by+y and b = ar + z?.

(1) a,b> 0: Here z , Y are both positive mtegers Smce a?+4b=
= (a+2z)?2, we have b = z(a+1) > a. Snmlarly, aiss y(b+y) >b

a.nd we have contradlctlon

(2)a=0o0rb= 0: When a' = 0,bisa perfect square and when
b = 0, a must be perfect square Thus (a,b) = (0,d?),(d?,0), d € Z,
are both solutions. -

(3) a,b < 0: We assume Wlthout loss of generahty that a > b.

"Then a? + 4b > 0 implies a® > —4b > —4a. Thus a < —4. When

a'= —4;b = ~4. When'a = —5, b = —5,—6. When a = —6,
—-6>0b > ~9. Of these only (a,b) = ( —4,-4), ( 5, —6) are solutions.

. Now consider the case a < —7. From b* + 4a = n? = (b4 2y)?, we

have y > 1. If y =1, then'b = a—1 < —8. Thus a2 +4b =b?— 6|b|+1 3
and this is not a square since (|b| 4)2 < b2 - 61b| + 1< (Ibl - 3)2
Thusy>2orb<a—-2 Butio o

b2+4b<b2+4a— (b+2y)2 < (b+4)2 : or SUK ef)
which is 1mp0331b1e Z

(4) a > 0,b<0: From b2+4a (b+2y)2 and a’+4b = (a+2x)2

,,,,,,

wehavea:,y< -1. Ify=—-1lorz = -1, thena'=1— b and

indeed (a,b) = (k,1 — k) satisfies both equatlons Ifz;y < —2, then > K

a = y|(lyl + Ibl) . 2|bl and [b| = le(a A Izl) 2 le Thus ,




Combining the four cases, we have the following solutions:

(_4’ _4)’ (_5’ _6)’ (—6’ —5)3 (0’ kz), (kza 0)3 (kv 1% k) where k € Z.

5. Let S be a set of 2n + 1 points in the plane such that no three
are collinear and no four concyclic. A circle will be called good if it
has 3 points of S on its circumference, n — 1 points in its interior and
n — 1 in its exterior. Prove that the number of good circles has the
same parity as n.

Solution by the editor. For any two points A and B, let Py, P, ..., Py
be points on one side of the line AB and Px41, ..., Pan—1 be points
on the other side. We shall prove that the number of good circles
passing through A and B is odd. Let

o | LARR ifi=1,...,k
©=1180° - ZAPB ifi=k+1,...,2n—1

It is easy to see that P; is in the interior of the circle ABPF;, if and
only if

0j>0i for1_<_j§k

0; <6; fork+1 <YL 2m=T
Arrange the points P; in increasing order of their corresponding angles
0;. Colour the points P;, i = 1,...,k, black and the points P;, ¢ =
k+1,...,2n — 1, white. For any point X (different from A and
B), let Bx be the number of black points less than X minus the
number of black points greater than X and Wx be the corresponding
difference for white points. (Note that black points which are greater
than X are interior points of the circle ABX while the white points
greater than X are exterior points.) Define Dx = Bx — Wx. From
the forgoing discussion we know that AABX is good if and only if
Dx = 0. We call such a point good. If X < Y are consecutive points,
then Dy = Dy if X and Y are of different colours. (It is easy to show
that Dy — Dx = —2 if X and Y are both white and Dy — Dx = 2 if
X and Y are both black. But we do not need these.)

If all the points are of the same colour, there is only one good
point, namely the middle point among the P;’s.

Now' we suppose that there are points of either colour. Then
there is a pair of adjacent points, say X,Y, with different colour.
Since Dy = Dy, either both are good or both are not good. Their
removal also does not change the value of Dz for any other point
Z. Thus the removal of a pair of adjacent points of different colour
does not change the parity of the number, of good points. Continue to
remove such pairs until only points of the same colour are left. When
this happens there is only one good point: Thus the number of good
circles through A and B is odd.




Now let g4p be the number of good circles through A ‘and B.
Since each good circle contains exactly three points, i.e., three pairs
of points. Then ) gap = 3g where g is total number of good circles.
Since there are a total of n(2n + 1) terms in the sum, and each term
is'odd, we have g =n (mod 2).

Singapore International Mathematical Olympiad
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1. In a triangle ABC, AB > AC, the external bisector of angle A
meets the circumeircle of triangle ABC at F, and F is the foot of the
perpendicular from E onto AB. Prove that 2AF AB — AC.

Official solution. Let A’ be the point on AB such that
A'F =/FA. Then AAEA’ is isosceles. Extend EA’
meeting the circumcircle of AABC at E’. Join BE'
and BE. Since ZABC = ZEBC—-/ZABE = LAA'E—
ZABE = ZE'EB, we have BE' = AC. Also, AAEA'
is similar to AE’BA’ implies that A'B = BE' = AC.
Hence, 2AF = AB - A'B = AB — AC.

(Remark: Let PA be the tangent at A with P inside
the sector of ZQAE. As AB > AC, we have ZC >
4B. 'Hence; ZPAB = /ZC > /B = ZQAP. This
implies that E is on the arc AB not containing C.
Also, ZEBF = /PAFE < LEAB so that BF > AF,
Hence, A’ is between F' and B.)

2. ' Find all prime integers p such that 5? 4+ 127 is a perfect square.

Official solution. The problem can be changed to find all integers m
such that 5™ + 12™ is a perfect square. Again the only answer is m =
2. We shall give the solution in this more general case. (The solution
of the original problem is easy by considering mod 5 or mod 10.)

One solution is p = 2 and we assert that it is the only solution.
If p = 2k + 1 is odd; then 5%F+1 4 12241 = 92k+1 = 9.4k = o(_1)k =
2 0r 3 (mod 5). However the square of an integer can only be 0,1
or 4 (mod 5). So 5° + 127 is not a square when p is odd.

Now suppose that 52" +122" = 2 with n > 2. Then
52" = 2 — 122" = (t — 12")(t + 127).
If 5 divides both factors on the right, it must also-divide their dif-
ference’ which means it divides 12. But this is 1mp0381ble Thus

t—-12"—1and

5209 19" 41 or 22nHIgML (57 _ 1)(5n 4 1),




}T“f e Rl e |

If n is odd, then 3 | 5" +1.and 3 { 5" — 1. Thus 5" + 1= 2-3"
and 5" — 1 = 4™ which cannot hold for n > 1. If n is even, then
5" —1=2-3" and 5" +1 =47, wh1chagamcannotholdforn>2
Thus there is no solution for p = 2n, n > 2. 3

R There are n blue points and n red. pomts on a straight line. Prove

that the sum of all distances between pairs of points of the same colour
is less-than or equal to the sum of all dlsta.nces between pairs of pomts

: of different colours. -

Solution by Tan Chee Hau (Raﬁies Junior. College ). We shall prove the
assertion using induction on n. Let z;;2,...,Z, be the coordinates
of the n red points on the real line. Sxmxlarly, let ¥1,92,...,yn be the
coordinates of the n blue points on the real line. Let S, be the sum

“of distances of points'of the | same colour, D, the sum of distances of
- points of different colours. If n = 1, then 8; = 0 and Dy = |:c1 y1|-

Cleatly,’ Dy >'S;. Now suppose D =1 2>Bn 10

Sn-= Sn—l = Z(x'n T mz) + (yn ‘ yl) = Z(mﬂ y') + (yﬂ e :B,)

‘l—-l ; " RG24 B

1-*1

Ty~ Dn..; = |$n ynl &+ Z Imn y;f-i- Iyn o xll > S S -

It follows from thxs and the 1nduct10n hypothesw that D, > S'

Solution by ' Lim Yin. Take 2 consecutxve points A and B with the,
coordinate of A less than the coordinate of B. Suppose that there
are k blue points and [/ red points with their coordinates less than
equal to the coordinate of A. Then the segment AB is covered
(n k)k + (n—)l times by segments whose endpoints have the same
colour, and (n—k)l+(n—1)k times by segments whose endpoints have
different colours. Since (n —k)k+ (n = 1)l < (n — k)l + (n— L)k, the
assertion follows by summing the lengths of all these segments over

,all pairs of consecutive points.

... Solution by Julius Poh. Let S be the total length of the segments
~ whose-endpoints ‘are of the same colour and D be the total length

of the segments whose endpoints are of different colour. - Move the
leftmost point to the right by a distance z. Then S decreases by

(n'= l)a:,L while D decreases by nz. Thus D decreases more than §.
; Contmue \to move this point until it hits the next point. If these two
“““points are of different colour, then deleting them ‘causes S and D to

decrease by the same amount. If they are of the same colour, then
continue to move the pair to the right and in the process D decreases .
more than S does. We continuing this process, when the block that

we are moving (all points in the block are of the same colour) hitsa =
point which is of different colour, remove a pair of points of different
. colour.” If it hits a point of the saine colour, then add the point to

e the block a.nd contmue movmg to the nght Eventually all the_ pomts’;‘




beginning D > S.
4. Find all functlons f R i R such for any m, Yy e ]R

. (z-— y)f(w+y)—(x+y)f(w y) = 4my(x ) ';

Oﬂ‘imal solu§zon. Let T=y= 1 We have f (0) =40, Let a=zT+Y
and b = z — y. Then the given functional equation is eqmva.lent to

For nonzero a ‘and thls can be rewntten as-

f(a) _ 10y o

‘ satxsﬁes the ngen relation. -

BC, AB, AC respectively, and M is the intersection point of AD and
BF, Suppose that C‘DEF isa rhombus Prove that DF2 DM-DA.

Oﬁ‘iczal solution. Set up a cooxdma,te system with CA on the z-

(1/2,“,\/‘ /2) and E (3/2 V3 /2) Then,
,‘a\ f - \/-3-(1.
2(a—1) 2(a—1) '

_a(1+a)  VBafa—1)
2(1 a+a?)’ 2(1 —a+ a2)

Hence, DF =1, DA2 = (1 —a)? +3 = ;1 ,
60° 60

D,Mz_(z(la( :+)a2) 3 ')2

Solutzon by Tay Kah K eng (Raﬁles Junwr College) Smee DE is p

allel to CA, ADEB is similar to AFAE so that DB : DE = FE : —
FA. As C’DEF is a rhombus, we have DE = FE = DF. Hence,

DB: DF = FD: FA. Also, ZBDF = /DFA = 120°. This shows -
that ABDF is similar to ADFA Therefore, ZDFB = /FAD, ThlS‘
implies’ th"at ADM F is sumlan to ADFA Consequently, DF2
DM . DA e

Lk

will be removed a.nd both bod and D have decreased to 0 Thus at the‘

bf(a)—a f(b) = (a® - b?)ab. This holds for all real numbers aandb.

: Hence, for any nonzero “Toak: number z, ﬂ—)- ’:— f(l) i
a=f(1)-1. We have f(z) = 2% + aa, fora.lla: #0, As f(0) =0,
we thus-have f(z) = 2’ + oz for all z € R.. Clearly f(z) = 2% + oz

5. Ina triangle ABC, AC = 60°,D; E F are pomts on the sides

‘axis.and C-=(0,0). Let A = (a,0) with a > 0, F #=iil; 0) D =




Leﬁ2 n be agy mteger > 2. ] Z l/pq-- 1/2 whete the
‘,‘summahenxsover mtggemg,qwhchsﬁwﬁ0<p<q<n

5 ; ; ‘ ) : ’“ s{r
f (n) be he ngen suin The summa.nds tha.t‘;
appea.r m f(n) bnt not in. f(n ;@1) are those of the form oy =
p<’n, (p,n)‘-—l thesurﬁmanﬁainﬂn but not 1n~

‘of the form b, = 1/p(n — p) where 1 < p <n-p
,p) ;-—d, equwalentky (p,gn) =1 (Fgr example if n = H}
,3-‘-;)




