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2 3 CLIMBING STAIRCASE 

Let us begin our discussion by considering the following counting problem. 

Example 23.1. Figure 23 .1 shows a 9-step staircase. A boy wishes to climb the staircase up to 
the highest step. It is assumed that each move the boy takes can cover only 1 step on 2 steps. 
How many ways are there for the boy to climb the staircase? 

Figure 23.-1 

In our previous articles [ 3-10], we have learnt a number of principles and techniques to 
solve some counting problems. Naturely, we would like to try and see any of these can be 
applied to solve the above problem without listing all the possible ways. After poundering for a 
while, however, we may be doubtful about it. Is there any new idea available to tackle the 
problem? 

The number of steps of the staircase given in the problem, which is 19', may be slightly 
bigger. Why don't we try by starting with some simpler cases to gain some 'feelings'? 

When the staircase consists of 1, 2 and 3 steps, the ways of climbing the staircase are 
shown in Figure 23.2, and the number of ways is, respectively, 1, 2 and 3 too. 

(i) 1-step 

(ii) 2-step 
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(iii) 3-step 

Figure 23 .2 

How about 4-step staircase? Will the number be '4' also? No! The number of ways in this 
case is now '5' and the 5 different ways of climbing are shown in Figure 23 .3. 

(1) (2) (3) 

(4) (5) 

4-step 

Figure 23 . 3 

Let us hold the '4-step' case for a while and analyse why we have '5' ways in this case. 
What can the boy do for his first move? By assumption, it can cover 1 step or 2 steps. We 
now split our consideration into 2 cases accordingly. 

(i) Suppose the first move covers 1 step. Then there are 3 steps left. How many ways 
are there to climb the remaining 3 steps? This question is crucial! Can we link it to 
the '3-step' case? There are 3 ways to climb the 3-step staircase as shown in Figure 
23 .2 (iii). If we follow each of these 3 ways to climb the remaining 3 steps, we will 
get 3 different ways (and no more) to climb the 4-step staircase in this case as shown 
in ( 1) - (3) of Figure 23.3 . 

(ii ) Suppose the first move covers 2 steps. Then there are 2 steps left. There are 2 ways 
to climb the 2-step staircase as shown in Figure 23 .2 (ii) . If we follow each of these 
2 ways to climb the remaining 2 steps, we will get 2 different ways (and no more) to 
climb the 4-step staircase in this case as shown in (4)- (5) of Figure 23.3. It is now 
clear that by applying (AP), we will have 3 + 2, i.e., 5 different ways to climb the 
4-step staircase. 
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What have we learnt from the above analysis? We have learnt that the problem of bigger 
size (4-step) depends on the same problem but of smaller size (3-step and 2-step) , and the solution 
of the problem of bigger size can be obtained from the solutions of the same problem but of 
smaller size. This is a 'new' idea for us. It works for '4-steps'. Does it work for any 'n-step'? 

Now, given any integer n;?: 4, for convenience, let us denote by a the number of ways to 
n 

climb ann-step staircase. Thus our previous records show that a
1 

= 1, a
2 

= 2, a
3 

= 3 and a
4 

= 5. 
Indeed, we have just witnessed that a

4 
= a

3 
+ a

2
. Can we get a 'similar' equality for an? 

Imagine now the boy is to climb ann-step staircase. His first move can cover, by assumption, 
either 1 step or 2 steps. Divide our consideration into two cases as follows: 

Case 1. The first move covers 1 step. 

Then there are n - 1 steps left. How many ways are there to climb these remaining n - 1 steps? 
By definition, there are an- t ways. 

Case 2 . The first move covers 2 steps. 

Then there are n - 2 steps left. How many ways are there to climb these remaining n - 2 steps? 
By definition, the answer is an_

2
. 

Combining the results of these two cases by applying (AP), we conclude that 

a. = an-! + an-2 for n ;::: 4. 

The original problem asks for the determination of a
9

. We shall evaluate it from our general 
result 'an = an-

1 
+ an_

2
' together with some 'initial' values (for instance, a

1 
= 1, a

2 
= 2, a

3 
= 3 and 

a
4 

= 5 ). Applying our general result successively, we have: 

and finally 

as required. 

a
5 

= a4 + a
3 

= 5 + 3 = 8, 
a

6
=a

5
+a

4
=8+5= 13, 

a
7 

= a
6 

+ a
5 

= 13 + 8 =21, 
a

8 
= a

7 
+ a

6 
= 21 + 13 = 34, 

In the above example, we obtain a sequence of numbers, namely, 

and in general an= an- t + an_2 . The relation an= an-t + an_2 which expresses an for a general n, in 
terms of some preceding numbers in the sequence (in this case, an-t and an_

2
) is called a recurrence 

relation. As we have witnessed just now, deriving a recurrence relation is a way of solving a class 
of counting problems. 

I 
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The sequence of numbers: 1, 2, 3, 5, 8, ... as given above is called the sequence of Fibonacci 
numbers, named after the Italian mathematician Leonardo Fibonacci ( 1170-1240), a great 
mathematical innovator during the Middle Ages. Fibonacci was born in Pisa. Around 1192, his 
father was the director of the Pi san trading colony in Algeria. Hoping that his son could become 
a businessman, the father brought Fibonacci to Algeria to study mathematics with an Arab master. 
A few years later, sent by the father on business trips, Fibonacci had several occasions to visit 
places in such as Egypt, Syria, Greece, Sicily etc, where he took opportunities to learn various 
numerical systems and methods of calculation. Around 1200, after returning to Pisa, Fibonacci 
started to write a book entitled 'Liber abbaci' (Book of the Abacus), which was completed in 
1202. In this book, one finds the following counting problem about rabbits. 

Beginning with a pair of baby rabbits, and 
assuming that each pair gives birth to a 
new pair each month starting from the 
second month of its life, how many pairs 
of rabbits will there be after one yeao 

Fibonacci ( 11 70 - 1240) 

If we write F to denote the number of pairs of rabbits at the end of the nth month, then 
n 

one can see from Figure 23.4 thatF
1 
= 1, F

2 
= 1, F

3 
= 2, F

4 
= 3, F

5 
= 5, etc. Indeed, it can be shown 

(see Problem 23.2) in general that F.= F._
1 

+ F._
2 

for all n;:::: 3, which is essentially the same as the 

recurrence relation a"= a"_
1 

+ a._
2 

that we derived in Example 23.1. Note that in Example 23.1, 
our initial values are a

1 
= 1 and a

2 
= 2 while in Fibonacci's problem, we have F

1 
= F

2 
= 1. 

1st Month , 2nd Month , Jrd Month , 4th Month , 5th Month 
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Figure 23 .4 



Problem 23.1. There are n lines in a plane. Every pair of lines intersect, but no three are meeting 
at a common point. How many regions is the plane divided into by these n lines? 

Problem 2 3. 2. Let F denote the number of pairs of rabbits at the end of the nth month, where 
n 

n ~ 1, as given in Fibonacci's problem of rabbits . Show that F. = F._
1 

+ F._
2 

for n ~ 3. 

Problem 23.3. Find a recurrence relation for the number of binary sequences of length n with 
no consecutives O's. 

24. THE TowER OF HANOI 

Let us proceed to consider our second example. 

Example 24.1. A tower of 8 circular discs of different diameters is stacked on one of the three 
vertical pegs as shown in Figure 24. 1. 

Figurer 24.1 

The task is to transfer the entire tower to another peg by a number of moves subject to the 
following rules: 

(i) each move carries exactly one disc and 
(ii) no disc can be placed on a smaller one. 

What is the minimum number of moves required to accomplish the task? 

Again, for convenience, let b denote the minimum number of moves required to transfer 
n 

the entire tower with n discs from one peg to another. The problem is to find the value of h
8

• 

From the experience we have gained in the preceding section, let us first consider some 
simplest cases. When n = 1, it is clear that one move is enough and sob 

1 
= 1 When n = 2, one 

can try and find out that two moves are not enough; whereas the following sequence of moves, 
as shown in Figure 24.2, shows that three moves could do the job. Thus h

2 
= 3. 

• I 
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(2) 

(3) 

~ 

Figure 24 .2 

Consider now the case when n = 3. The sequence of moves shown in Figure 24.3 shows 
that seven moves are enough to accomplish the task. 

(e) (f) 

(7) 

~ 

(g) Figure 24.3 
(h) 



Is 'seven' the minimum number of moves required? As shown in Figure 24.3 (d), before the 
largest disc could be moved to another peg, we have to transfer the entire tower of 2 smaller 
discs to a peg, and we know that it requires h

2
(=3) moves. After moving the largest disc to place . 

at the bottom of another peg as shown in Figure 24.3 (e), we have to transfer the entire tower of 
2 smaller discs and place it on the largest disc, and this requires another h/=3) moves. Thus we 
need at least h

2 
+ 1 + h

2 
i.e., 2h

2 
+ 1 ( = 7) moves to accomplish the task. This, together with the 

sequence of seven moves shown in Figure 24.3, shows that b
3 

= 7. 

In the above discussion, we have found that b
3 

= 7. Indeed, we have obtained the relation 
b

3 
= 2h

2 
+ 1, an instance of a recurrence relation. Can we generalize it? More precisely, given 

n ~ 3, is it true that bn = 2bn-l + 17 

Imagine now we have a tower of n (~ 3) discs stacked on one of the 3 pegs (say peg (a) as 
shown in Figure 24.4 and we wish to evaluate b , the minimum number of moves needed to 

n 

transfer the entire tower of n discs to another peg. 

l I I 
,- L ___ _j l 

n ,L_ ____ __j, 
,-L__ _ __j l 

(a) (b) (c) 

Figure 24.4 

In the process of transferring the entire tower, it is clear (by the rule (ii)) that at certain stage we 
must arrive at the situation, as shown in Figure 24.5, where the entire tower ofn- 1 smaller discs 
has been transferred to another peg (say peg (c)) so that we have an opportunity to move the 
largest disc from the original peg to the bottom of a peg (in this case, peg (b) ). What is the 
minimum number of moves needed to transfer the entire tower of n - 1 smaller discs from peg 
(a) to peg (c)? By definition, this number is b"_

1
• After moving the largest disc from peg (a) to 

peg (b) as shown in Figure 24.6, our final job is to transfer the entire tower of discs at peg (c) and 
place it on the largest disc at peg (b). What is the minimum number of moves needed for this 
final job? By definition, this number is b"_

1 
again. Summing up, we see that the minimum number 

of moves that are needed for the whole task is b"_
1 
+ 1 + b"_

1
• Accordingly, by definition of b", we 

have 

b = 2b + 1, 
n n-f 

another example of a recurrence relation . Let us return to the problem in Example 24.1, where 
we were asked to evaluate h

8
. Based on the result that h

2 
= 3, by applying our recurrence relation 

b = 2b + 1 successively, we obtain 
n n- f 

and finally b 
8 

= 25 5, as required. 
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Figure 24.5 
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Figure 24 .6 

Observe that we actually have a nice single formula for the value of b : 
" 

and in generaC b = 2" - 1 (see Problem 24.1 ). 
" 

The problem described in Example 24.1 is known as the Tower of Hanoi (ToH) . Why is 
'Hanoi', the capital of Vietnam, associated to this problem? Well, this could have something to 
do with the following two facts that the inventor of this problem is a French and the problem 
was introduced at the time when France began her military involvement in Vietnam (see Hinz 
[1]) . According to Hinz [2] , the picture shown in Figure 24.7, which was the cover of a box, was 
found in Paris in 1883 . Looking at the picture closely, we could find several items therein which 
are related to tropical Asia, and particularly, Vietnam. These include a Vietnamese, two sites in 
Vietnam: Tonkin andAnnam, and the title 'La Tour d'Hanoi'. Two special names are also appeared 
in the picture . These are Professor N . Claus (de Siam) and his College Li-Sou-Stian. According 
to the French mathematician de Parville, the two names above are anagrams for Professor Lucas 
(d'Amiens), the inventor of this problem, and his College Saint Louis . As Lucas was Agrege de 
l'Universite, it is believed that he is the one carrying the ten-level tower in the picture. Francois 



Edouard Anatole Lucas ( 1842 - 1891) was a French mathematician who did much work in Number 
Theory, Recurrent Sequences and Recreational Mathematics. In pre-computer age, he was the 
last 'largest prime number record' holder. He gave the sequence of Fibonacci numbers, as 
introduced before, its name and he himself has the following sequence: 2, 1, 3, 4, 7, 11, 18, 29, 
... named after him. 

Edouard Lucas ( 1842 - 1891) 
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In this article, we have discussed two counting problems and introduced a way, called the 
technique of recursion or the method by recurrence relation to solve them. The technique of 
recursion essentially amounts to a derivation of a recurrence relation (such as a. =an-t + a._

2 
and 

a. = 2an-t + 1) which expresses the required number of ways' a. 'when the size for the problem is 
n in terms of the numbers of ways where the sizes for the problem are smaller than n (such as 
an-t' a._J It is often very easy to find the number of ways 'at, a

2
, a

3 
'when the sizes for the 

problem are extremely small . With these values, called the initial values, the recurrence relation 
that has been established can then generate successively the values of a 's. From a computational 

n 

stand point, solving a counting problem by the technique of recursion can sometimes be more 
useful and efficient than by a formula, especially when we need to compute all the values: at, a

2
, 

... , an up to some point. 

Problem 24.1. Let b denote the minimum number of moves as defined in Example 24.1. Show 
n 

that b = 2" - 1 for all n ~ 1. 
n 

Problem 24. 2. For n ~ 3, let D be the number of derangements of { 1 ,2, .. . ,n}, as defined in 
n 

Section 22 [ 1 0]. Show that 

Problem 24.3. Let rand n be positive integers such that n:::; r. Let s(r,n) denote the number of 
ways to arranger students to be seated around n (indistinguishable) tables such that there is at 
least one student in each table. Show that 

s(r,n) = s(r-1, n -1) + (r-1)s(r- 1, n) . 
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