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Problems 

Eleventh Irish Mathematical Olympiad, May 1998 

First Paper 

1. Show that if x is a nonzero real number, then 

8 5 1 1 x -x -- +- > 0. x x 4 -

2. P is a point inside an equilateral triangle such that the distances from P to the three 
vertices are 3, 4 and 5, respectively. Find the area of the triangle. 

3. Show that no integer of the form xyxy in base 10 (where x and y are digits) can be 
the cube of an integer. 

Find the smallest base b > 1 for which there is a perfect. cube of the form xyxy in 
base b. 

4. Show that a disc of radius 2 can be covered by seven (possibly overlapping) discs of 
radius 1. 

5. If xis a real number such that x 2 - xis an integer, and, for some n;::: 3, xn- xis also 
an integer, prove that x is an integer. 

Second paper 

6. Find all positive integers n that have exactly 16 positive integral divisors d1 , d2 , ... , d16 

such that 

d6 = 18, dg- ds = 17. 

7. Prove that if a, b, c are positive real numbers, then 

__ 9_ < 2 (-1- + _1_ + _1_) 
a+b+c- a+b b+c c+a 

_1_ + _1_ + _1_ < ! (! +! + !) 
a+b b+c c+a-2 a b c 

8. Let N be the set of natural numbers (i.e., the positive integers). 

{1) 

{2) 

(a) Prove that N can be written as a union of three mutually disjoint sets such that, if 
m, n EN and lm- nl = 2 or 5, then m and n are in different sets. 

{b) Prove that N can be written as a union of four mutually disjoint sets such that, if 
m, n EN and lm- nl = 2, 3, or 5, then m and n are in different sets. Show however, 
that it is impossible to write N as a union of three mutually disjoint sets with this 
property. 



I • 

I • 

I • 

9. A sequence of real numbers Xn is defined recursively as follows: x 0 and x 1 are arbitrary 
positive real numbers, and 

1 + Xn+l 
Xn+2 = , n = 0, 1, 2, .... 

Xn 

Find x1998· 

10. A triangle ABC has positive integer sides, LA = 2LB and LC > 90°. Find the 
minimum length of the perimeter. 

XI Asian Pacific Mathematical Olympiad, March 1999 

1. Find the smallest positive integer n with the following property: There does not exist 
an arithmetic progression of 1999 terms of real numbers containing exactly n integers. 

2. Let a 11 a2 , ••• be a sequence of real numbers satisfying ai+i ~ ai+a; for all j = 1, 2, .... 
Prove that 

for each positive integer n. 

3. Let r 1 and r 2 be two circles intersecting at P and Q. The common tangent closer 
toP, of f 1 and f 2 touches f 1 at A and f 2 at B. The tangent of f1 at P meets f2 at 
C, which is different from P and the extension of AP meets BC at R. Prove that the 
circumcircle of triangle PQR is tangent to BP and BR. 

4. Determine all pairs (a, b) of integers with the property that the numbers a 2 + 4b and 
b2 + 4a are both perfect squares. 

5. Let S be a set of 2n + 1 points in the plane such that no three are collinear and no 
four concyclic. A circle will be called good if it has 3 points of Son its circumference, n -1 
points in its interior and n - 1 in its exterior. Prove that the number of good circles has . 
the same parity as n. 

Solutions 

Auckland Mathematical Olympiad 1998, Division 2 

6. Find all real solutions of the system of equations 

x + y + xy = 11 

x 2 + xy + y2 = 19 

(1) 

(2) 



Solution similar to the official solution by Lim Chong Jie (Temasek Junior College), Lim 
Kim Huat (National Junior College), the following students from Raffles Institution: Ong 
Chin Siang" Colin Tan Weiyu, Justin Yek Jia Jin; and the following students from Anglo 
Chinese School (Independent): Joel Tay Wei En, Julius Poh Wei Quan. Chan Sing Chun 
gave a different solution. 

Adding up the two equations we get 

(x + y) 2 + (x + y)- 30 = (x + y + 6)(x + y- 5) = 0. 

Thus x + y = -6 or 5. If x + y = -6, then (1) yields 

x 2 + 6x + 17 = 0 

which has no real roots. If x + y = 5, then (1) yields 

x2
- 5x + 6 = 0. 

The solutions are x = 2, 3. Thus (x, y) = (2, 3) or (3, 2) both of which satisfy (2). Thus 
these are the only solutions. 

7. Some cells of an infinite square grid are coloured black and the rest are coloured white 
so that each rectangle consisting of 6 cells (2 x 3 or 3 x 2) contains exactly 2 black cells. 
How many black cells might a 9 x 11 rectangle contain? 

Solution similar to the official one by: He Ruijie (Dunman High School), Lim Chong Jie 
{Temasek Junior College), Julius Poh Wei Quan and Joel Tay Wei En from Anglo Chinese 
School (Independent) and the following students from Raffles Institution: Ong Chin Siang, 
Colin Tan Weiyu, Justin Yek Jia Jin. 

Suppose there is a pair of adjacent black squares. (See Figure 1) Then the remaining 
7 cells in the 3 x 3 rectangle are white, which is impossible since the 3 x 2 rectangle formed 
by the last two columns contains only one black cell. 

Suppose there is a white cell sandwiched between a pair of black cells. Then we have 
the situation shown in Figure 2 which is again impossible. Suppose there is a row of three 
white cells (first row of Figure 3). Then there must be two black cells in the second row 
which is impossible (by the previous two cases). Thus any 1 x 3 rectangle can contain only 
1 black cell. Since in a 9 x 11 rectangle, there are 33 1 x 3 rectangle, it can contain 33 
black cells. Figure 4 shows a colouring pattern which gives 33 black cells. 

Figure 1 Figure 2 Figure 3 Figure 4 

• 



8. Two circles C1 and C2 of radii r 1 and r 2 touch a line i at points A1 and A2, as shown 
in the figure below. 

The circles intersect at points M, N. Prove that the circumradius of the triangle A1M A2 
does not depend on the length of A1A2 and is equal to JriTi. 
Solutions similar to the official one by Chan Sing Chun, A. Robert Pargeter {England) and 
the following students from Raffles Institution: Colin Tan Weiyu, Justin Yek Jia Jin. 

Let LMA1A2 = 0 and LMA2A1 = ¢>. If 0 is the centre of C1, then LA10M = 20. 
Thus M A1 = 2r1 sin 0. Similarly M A2 = 2r2 sin¢>. Let r be the circumradius of tlM A1A2. 
Then, by sine rule, we have 

MA1 = MA2 = 2r. 
sin¢> sin 0 

A simple calculation then yields r = JriTi. 
9. Let a and (3 be two acute angles such that sin2 a+ sin2 (3 = sin( a+ {3). Prove that 
a+ f3 = 1rj2. 

Solution by Lim Chong Jie (Temasek Junior College). Also solved by Lim Kim Huat 
{national Junior College). Ong Chin Siang and Colin Tan Weiyu both of Raffles Institution 
obtained solution similar to the official one. 

Since sin( a + (3) = sin a cos f3 + sin (3 cos a, the equation becomes: 

sina(sina- cosf3) = sinf3(cosa- sin/3), 

i.e., 

. . 2a + 2{3 - 1r 2a - 2(3 + 1r 
2 

. (3 . 2a + 2/3 - 1r 2/3 - 2a + 1r 
2 sm a sm 

4 
cos 

4 
= - sm sm 

4 
cos 

4 
. 

Since sin a, sin f3 are both positive, as are the two cosine terms, we have sin 2a+~,B-1r = 0 
otherwise the left hand side and the right hand side have opposite signs. Thus a+/3 = 1rj2. 

10. Find all prime numbers p for which the number p2 + 11 has exactly 6 different divisors 
{including 1 and the number itself). 



Solution similar to the official solution by Chan Sing Chun, Joel Tay Wei En (Anglo 
Chinese School (Independent)) and the following students from Raffles Institution: Ong 
Chin Siang, Colin Tan Wei Yu, Justin Yek Jia Jin. 

If p = 3, p2 + 11 has exactly 6 divisors. Now let p > 3. Then p is odd and p2 = 1 
(mod 4), thus p2 + 11 = 0 (mod 4). Also p2 = 1 (mod 3), thus p2 + 11 = 0 (mod 3). 
Thus p2 + 11 = 0 (mod 12). Since every p2 + 11 > 12 and every divisor of 12 is also a 
divisor of p 2 + 11, it follows that p 2 + 11 has more divisors than 12. Thus p 2 + 11 has more 
than 6 divisors. The only prime number with the desired property is therefore 3. 

Ukrainian Mathematical Olympiad, 1997 (Selected problems) 

1. (9th grade) Consider a rectangular board in which the cells are coloured black and 
white alternately like chess board cells. In each cell an integer is written. It is known that 
the sum of the numbers in every row and every column is even. Prove that sum of all 
numbers in the black cells is even. 

Solution by SIMO problem group. Call a cell odd if the number written in it is odd. A 
collection of cells is called a loop if each column and each row contains either 2 or none of 
the cells in the collection. Consider only the odd cells. In each column, as well as in each 
row, the number of odd cells is even. Thus the odd cells can be partitioned into loops. 
The proof goes as follows. Start with any odd cell. In its column there is another odd cell 
since the number of odd cells in that column is even. Similarly, in the row containing the 
second odd cell, there is another odd cell, not previously chosen. Continuing this way, we 
must eventually return to the starting odd cell. However, there may be a column or row 
with more than two odd cells. Say a is the first cell and b is the last cell in the column 
belonging to the collection in the order in which they were selected. Then we simply drop 
all the cells in the collection after a and before b. In this way, we can arrive at a collection 
which is a loop. This gives us a loop. Removing this loop leaves us in the same situation 
as before, i.e., every column and every row contain an even number of odd cells. Thus we 
can continue to find another loop. We can continue this way until there are no odd cells. 
Thus the odd cells can be partitioned into loops. 

Next we prove that in any loop the number of white cells is even as is the number of 
black cells. If a column contains two cells of the same colour, then the distance between 
the two cells is even. If it contains a white and a black cell, the distance between the cells 
is odd. Since we start and end with the same cell, the net vertical distance traveled is 0. 
Hence, the number of columns which contain a white and a black cell of a loop must be 
even. Thus the number of white cells and the number of black cells in a loop are both 
even. 

From the above we conclude that the number of black odd cells is even. Thus the sum 
of the numbers in the black cells is even. 

Official solution. Since the official solution is very elegant, we also present the official 
solution. Let the (1, 1) cell, i.e., the cell at the top left corner, be black. Add up the odd 

• 



columns and the even rows. Then each black cell appears exactly once in the sum and 
each white cell appears either twice or none at all in the sum. Since the sum is even, the 
sum of the numbers in the black cells is even. (Since the sum of all rows is even, one can 
see that the sum of all white cells is also even. Thus the same conclusion can be shown if 
the (1, 1) cell is white.) 

I I 
Figure 4 

2. (lOth grade) Solve the system of equations in real numbers: 

X1 + X2 + · · · + X1997 = 1997 

xi + x~ + · · · + xi997 = xf + x~ + · · · + xf997 

(1) 

(2) 

Solution similar to the official one by: Colin Tan Weiyu, Justin Yek Jia Jin both of Raffles 
Institution. 

From (1) and (2) we have 

(x1 - 1) + (x2- 1) + .. · + (x1997- 1) = 0 

xf(xl - 1) + · · · + xf997(x1997- 1) = 0. 

From (3) and ( 4), we have 

(3) 

(4) 

(x1- 1)2(xi + Xt + 1) + · · · + (x1997- 1)2(xi997 + X1997 + 1) = 0. (5) 

Since x 2 + x + 1 > 0 and (x- 1)2 2:: 0, for (5) to hold, we must have Xi - 1 = 0 for 
i = 1, 2, ... , 1997. Indeed these also satisfy the original equations (1) and (2). 

3. (lOth grade) Let d(n) denote the greatest odd divisor of the natural number n. Define 
the function f: N-+ N by f(2n -1) = 2n, f(2n) = n + 2n/d(n) for all n EN. Find all k 
such that f(f( ... (1) ... )) = 1997 where f is iterated k times. 

Answer obtained with proof by Joel Tay Wei En (Anglo Chinese School (Independent)), 
Justin Yek Jia Jin and Colin Tan Weiyu both from Raffles Institution. 

Let a1 = 1 and an+l = f(an) for n;?: 1. Then a1 = 1, a2 = 2, a3 = 3 and so on. After 
a few more terms, it is easy to notice that if am = 2i, then am+i+l = 2i+l. This can be 
proved as follows, Let am = 2i. Then 

am+l = 2j-l + 2j == 3 · 2j-l; 

am+2 = 3 · 2j-2 + 2j-l = 5 · 2i-2 ; 



Thus we can formulate the following induction hypothesis: 

am+i = (2i + 1)2i-i, i = 0, 1, ... ,j. 

am+i+l = (2i + 1)2j-i-l + 2j-i = (2(i + 1) + 1)2j-i-l. 

Thus the result follows by induction. Since a1 = 2°, we can write down a formula for an as 
follows. If n = (0+ 1+2+ · · · +p) + 1 +q, where p;:::: 0, 0 ~ q ~ p, then an= (2q+ 1)2P-q. 
If (2q + 1)2P-q = 1997, then p = q = 998. Thus a 4g9500 = 1997. Thus k = 499499. 

6. (11th grade) Let Q+ denote the set of all positive rational numbers. Find all functions 
f: Q+---+ Q+ such that for all x E Q+, f(x + 1) = f(x) + 1, and f(x 2 ) = (f(x)) 2 . 

Solution by Ng Boon Leong {Anglo Chinese School (Independent)). 

First note that from f(x + 1) = f(x) + 1, we can prove by induction that f(x + m) = 
f(x) + m. Now consider a positive rational number r = ajb where a and b are positive 
integers without common divisors other than 1. (Note that when b = 1, r is a positive 
integer.) Let f(r) = x. Then 

and 
. 

~t': 
~ · 

Comparing the two, we have x = ajb. Thus f(r) = r. Clearly this function satisfy the .._. ---....~-.--
conditions given in the problem. ¢ 

~ · 7. (11th grade) Find the minimum value of n such that in any set of n integers there Y/p/J,: 
exist 18 integers with sum divisible by 18. If . 

Solution Thirty four numbers are insufficient as shown by a collection of seventeen O's and 
seventeen 1's. Now we shall show that 35 numbers are sufficient. Let a 1 , ..• , a 35 be any 
given set of 35 integers. Let a36 be a number chosen so that the sum 2:~!1 ai is divisible by 
36. Among any 5 integers, there are always three whose sum is divisible by 3. (This fact 
can be proved by considering the remainders of the numbers when divided by 3. If there 
are three remainders with the same value, then the corresponding three numbers sum to a 
multiple of three. If not, then there are three numbers with pairwise distinct remainders. 
Again they sum to a multiple of 3.) Thus we can divide the 36 integers into twelve groups 
A1 , •.. , A12 , each with three numbers whose sum is divisible by 3. By a similar argument, 
we can divide A1 , ..• , A12 , into four groups Br, ... , B 4 , each consisting of three Ai's such 
that the sum of the nine numbers is divisible by 9. Consider the sum of the numbers in 
each of the Bi 's. Two of them must be of same parity, as are the other two. Thus the 36 
numbers can be divided into two groups, each with 18 numbers whose sum is divisible by 
18. The group that does not contain a36 contains 18 numbers whose sum is divisible by 
18. 

• 



39th International Mathematical Olympiad, 1998 

1. In the convex quadrilateral ABCD, the diagonals AC and BD are perpendicular and 
the opposite sides AB and DC are not parallel. Suppose that the point P, where the 
perpendicular bisectors of AB and DC meet, is inside ABCD. Prove that ABCD is a 
cyclic quadrilateral if and only if the triangles AB P and CD P have equal areas. 

First solution: If ABCD is a cyclic quad, then it is easy to show that LAPB + LCPD = 
180°. From here one easily concludes that the two areas are equal. 

For the converse we use coordinate geometry. Let P be the origin. Let the coordinates 
of A and B be (-a, -b) and (a, -b), respectively where a and b are both positive. Let 
the midpoint of CD be (c, d). Then, since P is in the interior, C is (c, d) - t( -d, c) = 
(c + td, d- tc) and D is (c, d)+ t( -d, c) = (c- td, d + tc), where t > 0. (The vector CD 
is in the direction ( -d, c).) Without loss of generality, let c2 + d2 = 1. Then area of PCD 
and AP B are t and ab, respectively. Thus t = ab. The fact that AC is perpendicular to 
BD implies that 

( c - td - a, d + tc + b) · ( c + td + a, d - tc + b) = 0. 

This simplifies to 

We have 
P A = P B = a2 + b2

, PC = P D = t 2 + 1 = a2b2 + 1. 

Thus PA = PB =PC= PD = b2 + 1 when a2 = 1, i.e., A, B, C, Dare on a circle with 
centre at P. 

D 

c 

A(-a, -b) B(a, -b) 

We now consider the case b2 + 2bd + 1 = 0. Consider this as a quadratic equation in b, 
the discriminant 4d2 - 4 2: 0 if and only if d2 2: 1. But we know that d2 ~ 1. Thus d2 = 1 
and consequently b = ±1 or b2 = 1. Since b > 0, we actually have b = 1 and d = -1. Thus 
c = 0 whence A = C and B = D, which is impossible. 



Second solution (official): Let AC and BD meet at E. Assume by symmetry that P 
lies in !l.BEC and denote L.ABE =¢and LACD = '1/J. The triangles ABP and CDP 
are isosceles. If M and N are the respective midpoints of their bases AB and CD, then 
PM ..LAB and PN ..LCD. Note that M, Nand Pare not collinear due to the uniqueness 
of P. 

Consider the median EM to the hypotenuse of the right triangle ABE. We have 
L.BEM =¢,LAME= 2¢ and L.EMP =goo- 2¢. Likewise, L.CEN = 1/J, LDNE = 'lj; 
and LEN P = goo - 2'1/J. Hence L.M EN = goo + ¢ + 'lj; and a direct computation yields 

LNPM = 360°- (LEMP + L.MEN + L.ENP) =goo+¢+ 'lj; = L.MEN. 

It turns out that, whenever AC ..L BD, the quadrilateral EMPN has a pair of equal 
opposite angles, the ones at E and P. 

We now prove our claim. Since AB = 2EM and CD = 2EN, we have [ABP] = 
[CDP] if and only if EM· PM= EN· PN, or EM/EN= PN/PM. On account of 
LMEN = LNPM, the latter is equivalent to !l.EMN "" !l.PNM. This holds if and 
only if L.EMN = LPNM and L.ENM = LPMN, and these in turn mean that EMPN 
is a parallelogram. But the opposite angles of EMPN at E and P are always equal, 
as noted above. So it is a parallelogram if and only if LEMP = LENP; that is, if 
goo- 2¢ =goo- 2'1/J. We thus obtain a condition equivalent to¢= '1/J, or to ABCD being 
cyclic. 

2. In a competition, there are a contestants and b judges, where b ~ 3 is an odd integer. 
Each judge rates each contestant as either "pass" or "fail". Suppose k is a number such 
that, for any two judges, their ratings coincide for at most k contestants. Prove that 

k b -1 
->-­a- 2b · 

Solution: Form a matrix where columns represent the contestants and the rows represents 
the judges. And we have a 1 when the judge "passes" the corresponding contestant and a 
0 otherwise. A pair of entries in the same column are "good" if they are equal. Thus the 
number of good pairs in any two rows is at most k whence the total number of good pairs 
in the matrix is at most (~)k = kb(b- 1)/2. In any column, ifthere are i zeroes, then the 
total number of good pairs is {;)+(~),where j = b- i. Write b =2m+ 1 (since b is odd), 
we have 

(~) + (;) - m 2 = (m- i)2 + (m- i) = (m- j)2 + (m- j) ~ 0 

since either m- i 2: 0 or m- j 2: 0. Thus the total number of good pairs is at least 
am2 = a(b- 1)2 /4. Therefore 

a(b- 1)2 /4 s kb(b- 1)/2 • 
• 
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• 
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from which the result follows. 

3. For any positive integer n, let d( n) denote the number of positive divisors of n (in­
cluding 1 and n itself). Determine all positive integers k such that 

for some n. 

d(n2) = k 
d(n) 

Solution: Note that if n = p~1 
• • • p~i is the prime decomposition of n, then d(n) = (k1 + 

1) · · · (ki + 1) and d(n2) = (2k1 + 1) · · · (2ki + 1) Thus for d(n2)/d(n) to be an integer, 
k1, ... , ki must all be even so that the denominator contains no even divisors. Thus, an 
integer q satisfies d(n2)/d(n) = q for some n if and only if q is of the form 

(4kl + 1)(4k2 + 1) ... (4ki + 1) 
(2kl + 1)(2k2 + 1) ... (2ki + 1) 

Thus q is necessarily odd. Hence we need to show that every odd number can be expressed 
in the same way. Certainly 1 and 3 can be so expressed as 1 = 1/1 and 3 = ~~- Let p be 
an odd integer. We assume that every odd integer less than p can be written in the form 
(*). We have 

for some positive integer m and nonnegative integer k. If m = 1, then p = 4k + 1 = 
~Z$~ (2k + 1). Since 2k + 1 < p, by the induction hypothesis, it can be expresses in the 
form ( *) and hence so can p. 

Now suppose that m > 1. We have 

p(2m- 1) = 22m-lk- 2mk +22m-2 - 2m+ 1 = 2mx + 1 

and 
2mx+1 2m-lx+1 4x+1 p(2m-1) p 

2m-lx + 12m-2x + 1 2x + 1 2x + 1 2k + 1 

since 2x + 1 = (2m-l- 1)(2k + 1). Since the left hand side is of the form(*) and 2k + 1 
can be written in that form by the induction hypothesis, we conclude that p can also be 
written in the same form. 

(Note: The main idea is that it is easy to solve the case where p = 1 (mod 4). For 
p = 3 (mod 4), we try to multiply p with an odd integer so that p(4k + 3) = 4£ + 1. By 
considering small values of p it was found that 2m - 1 as defined above works.) 

4. Determine all pairs (a, b) of positive integers such that ab2 + b + 7 divides a2b +a+ b. 

Solution: Since ab2 + b + 7lb(a2b +a+ b) and a2b2 + ab + b2 = a(ab2 + b + 7) + (b2 - 7a), 
we have either b2 - 7a = 0 or b2 - 7a is a multiple of ab2 + b + 7. The former implies that 
b = 7t and a = 7t2. Indeed these are solutions for all positive t . 



For the second case, we note that b2
- 7a < ab2 + b + 7. Thus b2 - 7a < 0. For 

ab2 + b + 7 to divide 7a- b2
, b = 1, 2. The case b = 1 requires that 7a - 1 be divisible 

by a+ 8. The quotients are less than 7. Testing each of the possibilities yields a= 4g, 11. 
These are indeed solutions. 

The case b = 2 requires that 7a- 4 be divisible by 4a + 11. The quotient has to be 1 
and this is clearly impossible. 

5. Let I be the incentre of triangle ABC. Let the incircle of ABC touch the sides BC, 
C A and AB at K, L and M, respectively. The line through B parallel to M K meets the 
lines LM and LK at RandS, respectively. Prove that LRIS is acute. 

First solution: (Use coordinate geometry) Let I be the origin and the coordinates of B 
be (0, a). Without loss of generality, assume that the inradius of t:l.ABC be 1. Then 
the coordinates of M and K are (r, s and ( -r, s) where r = Ja2 - 1/a and s = 1/a. 
Let the coordinates of L be (p, q). Then we have p2 + q2 = 1. Let the coordinates of 
RandS be (x',a) and (x",a). Then x' = [r(a- q) + p(s- a)]/(s- q) = m + n where 
m = Ja2 - 1(a-q)/(1-aq) and n = p(1-a2)/(1-aq) and x" = -m+n. Let P be the mid 
point of SR. Then the coordinates of P are ( n, a) and LRI S is acute if and only if I P > m 
(so that Pis exterior to the circle with RS as a diameter.) Now IP2 = a 2 + n 2 > m 2 if 
and only if ( aq - 1 )2 > 0. Thus we are done. (Note: From the proof one can conclude 
that result still holds if one replaces the incircle by the excircle and the incentre by the 
corresponding excentre. 

S(-m + n,a) B(O, a) P(n, a) R(m + n,a) 

c 

A 

Second solution (official): Let LA = 2a, LB = 2b and LC = 2c. Then we have 

LBMR =goo- a, LMBR =goo- b, LBRM =goo- c. 



Hence BR = BMcosajcosc. Similarly BS = BKcoscjcosa = BLcosajcosa. Thus 

IR2 + !82
- RS2 = (BI2 + BR2

) + (BI2 + BS2
)- (BR + BS)2 

= 2(BI2
- BR · BS) = 2(BI2

- BK2
) = 2IK2 > 0 

So by the cosine law, LRIS is acute. 

6. Consider all functions f from the set N of all positive integers into itself satisfying 

f (t2 f (s)) = s (! (t)) 2
, 

for all s and t inN. Determine the least possible value of !(1998). 

(Official solution): Let f be a function that satisfies the given conditions and let f(1) =a. 
By putting s = 1 and then t = 1, we have 

Thus 

f(at 2
) = f(t) 2

, f(f(s)) = a2 s. for all s, t. 

(J(s)f(t)) 2 = f(s) 2 f(at 2
) = f(s 2 J(J(at2

))) 

= f(s 2a2at2
) = f(a(ast) 2

) 

= f(ast) 2 

It follows that f(ast) = f(s)f(t) for all s,t; in particular f(as) = af(s) and so 

af(st) = f(s )f(t) for all s, t. 

From this it follows by induction that 

f(t)k = ak-1 f(tk), for all t, k. 

We next prove that f(n) is divisible by a for each n. For each prime p, let pa and rJ3 
be highest power of p that divides a and f(n), respectively. The highest power of p that 
divides f(n)k is pkP while that for ak-1 is p(k-1)a. Hence kfJ;:::: (k- 1)a for all k which is 
possible only if fJ;:::: a. Thus a divides f(n). 

Thus the new function g(n) = f(n)ja satisfies 

g(a) =a, g(mn) = g(m)g(n), g(g(m)) = m, for all m, n. 

The last follows from 
ag(g(m)) = g(a)g(g(m)) = g(ag(m)) = g(J(m)) 

= f(J(m))/a = a2m/m =am 

It is easy to show that g also satisfies all the conditions and g(n) ~ f(n). Thus we can 
restrict our consideration to g. 

Now g is an injection and takes a prime to a prime. Indeed, let p be a prime and let 
g(p) = uv. Then p = g(g(p)) = g(uv) = g(u)g(v). Thus one of the factors, say g(u) = 1. 
Then u = g(g(u)) = g(1) = 1. Thus g(p) is a prime. Moreover, g(m) = g(n) implies that 
m = g(g(m)) = g(g(n)) = n. 

To determine the minimum value, we have g(1998) = g(2 · 33 · 37) = g(2)g(3)3g(37). 
Thus a lower bound for g(1998) is 23 · 3 · 5 = 120. There is also a g with g(1998) = 120. 
This is obtained by defining g(3) = 2,g(2) ='3,g(5) = 37,g(37) = 5, and g(p) = p for all 
other primes. 


