


In higher mathematics, most formulas for derivatives of trigonometric functions are proved
either by using a direct method according to the definition of derivatives or by using an indirect
method according to the operation rules of derivatives [ 1]. These methods appear to be dull and
inflexible to readers. In this article, a geometrical method is given to derive the formula
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Let's consider the geometry shown in Figure 1. Unit circle O is put in the Cartesian plane.
The center of the unit circle O is located at the origin O and the circle O intersects the positive
x-axis Ox at point D. The tangent line AD of the unit circle O is parallel to the y-axis with the
contact point at D. Radial line OA intersects AD at point A with an angle 8 with respect to the
positive x-axis Ox. Assuming an increment in 8 is AB (<<1), the radial line OA coincides with
the radial line OC which intersects AD at point C and the increment in y is AC denoted by Ay.
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Figure 1. Geometry under consideration

In order to connect the unknown Ay with all the known data, we draw another arc AB
with its center at O and radius equal to OA. The arc AB intersects OA and OC at A and B,

respectively.
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<< 1, AABC can be

and AB can be
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which is just the formula
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= —csc’ 0.
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