


Abstract 

When one of us watched a class of 12 year olds tackling what we 
thought was a simple probability problem we didn't realise the time 
that we'd take to solve it. Now we can solve it by three more or less 
different ways, we're convinced we've seen a rich mathematical 
activity. But is it really a problem for 12 year olds? 

The Problem 

The problem is easy to state. 

Apparently you have just landed on the planet Qwerty with 6 kg 
of super neutron fuel. Unfortunately your space craft needs 12 kg 
of the fuel in order to get home. Fortunately there is plenty of 
super neutron fuel on Qwerty. Unfortunately, the Qwertians are 
gamblers. They are prepared to gamble>.for the fuel you need. If 
you can throw 2, 3, 4, 10, 11 or 12 with two (fair) dice, they'll give 
you 2 kg of fuel. On the other hand, if you can only manage 5, 6, 
7, 8 or 9, you give the Qwertians 2 kg of fuel. 

There's only one more catch. If you get your 12 kg of fuel, the 
Qwertians are happy to give you a rousing sendoff home. If you 
lose all the fuel you currently have and get down to 0 kg, then, 
we're sorry to say, you become Qwertians slaves for 10,000 years! 

So we guess the problem is, what are your chances of getting home? 

Tentative Steps 

The class we have on videotape got out the dice at this stage and 
started to simulate the problem. That's probably not a bad thing to 
do at the start. You'll get a feel for what the problem is about and 
might get some insight into the problem too. We'll leave it to you 
to decide what you're going to do next. You could keep reading, 
you could stop and see how far you can get by yourself or you could 
simply stop reading and go for a swim. We hope you'll try working 
on the problem by yourself. Even better get together with a friend 
and see what progress you can make. We'll still be here when you 

get back. 

For those of you that have come on board, try a little simulation. 
You can do this the old-fashioned way or you can snuggle up to 
yourfriendly neighbourhood computer and set things running. The 
class we observed did the former. In pairs they rolled and recorded 
their efforts. Then they combined their results and found that, of 
the 56 trials they had made, 15 had been successful. So 15 times 
they managed to pick up 6 extra kg of fuel from the Qwertians and 
41 times they ended up in slavery. Now, in the light of subsequent 
events, we rather think that the children cheated. Our own 
simulation attempts were far less "successful". Over a much longer 
sequence of trials, about 10,000, our chances of" escaping" appeared 
to be less than half those suggested by the children. Do we put this 

down to the optimism of youth? 

So what can we say at this stage? Where are we? What progress 
have we made? First of all it's clear that the Qwertians are onto a 
good thing. They have a much better chance of picking up slaves, 
than you do of getting back home to Earth. 

The second thing we can say, and it's probably useful to carry out 
this computation, is that, with every throw of the dice, the chance 

. l 
of getting anoth$:}1<g of fuel is 3 and the chance of losing 2 kg 

2 
of fuel is 3. These are not facts that the · 12 year olds knew or 

appreciated. Some of them thought, and not unreasonably so, that 
because 6 numbers out of 11 gave success, that the probability of 

6 
gaining fuel was 

11 
• If this had been the case. Qwerty would have 

far fewer long-serving slaves than it has right now. 

A third thing that can be said is that, although we can do a few 
simples cases, soml§times we might be involved in a marathon dice 
throwing competition. To simplify things, lets write· a + if we throw 
a 2,3,4,10,11 6r 12 and a- ifwethrowa 5,6, 7,>s or 9. Then 
what is the "simplest case"? Surely, because we want to go home 
(where have we heard that before?) the best simplest case is the 
event + + +. If we concentrate on a good event for a while, then 
the next simplest cases are 

Throw 
1st 2nd 3rd 4th 5th 

+ + + + 

+ + + + 

+ + + + 

while the next, next simplest case is 

Throw 
1st 2nd 3rd 4th 5th 6th 7th 

+ + + + + 

+ + + + + 

+ + + + + 

+ + + + ~+ 

+ + + + + 

+ + + + + 

+ + + + + 

+ + + + + 

+ + + + + 

But where is all that leading? How can we use this approach in any 
positive way when we know that we are going to have to contend 
with arbitrarily long sequences of pluses and minuses? 

The fourth thing that comes to mind, is to do what some of the 12 
year olds started to do, construct a tree diagram. Something like 

this, for example. 

0 

What we are clearly looking for here are all the nodes (points) with 
a +6 on them. We're also hoping to be able to calculate the 
probability of getting to such a node. And, when we've managed 
to do all that successfully, we want to add up all those probabilities 
to find out what your chances of ever leaving the planet Qwerty 

really are. 



A hopeless tas.k? 

What does all this suggest? Maybe the tree diagram9ives us some 

insight into how to make the + and - approach work. After all, 
the first "successful" node on the tree diagram comes about by 

1 1 1 
throwing + + +. And the probability of doing that is 3 x3 x3 

1 6 
because the probability of a + is 3 (not U , for example) and the 

throws are independent. At least we know that the probability of 

1 
escaping is 

27 
+something else. At least we know your chances are 

1 
better than 

27 
. 

But then we found three ways of escaping even though we "lost" 

2 1 1 1 2 
one throw. The probability of getting - + + + + is 3 x 3 x 3 x 3 = 81 

2 
But +- + + + and + +- + + also arrive with a chance of 81 each. 

So the probability of escaping having had one "bad" throw is 

3 x :
1 

= 
8

6

1 
. So we now know that your chances of living at home 

1 6 
to a ripe old age are 

27 
+ 81 + something still to be determined. 

Let's take a jump here. Suppose there are f" ways of totting up the 

pluses and minuses so that we get an excess of three pluses only at 

the last throw, that we throw n minuses altogether, and that we 

never have an excess of three minuses. Did you get that? We're not 

sure we did. The point is, no, the points are 

(1) 

(2) 

(3) 

we only want to get an excess of three pluses at the 

last throw; 

we never get an excess of three minuses; and 

we throw n minuses along the way. 

Just to check we're on track, we know that f0 = 1 (this is the + + + 

case) and we know that f, = 3 (this is the - + + + +, etc, case). 

What are the chances of getting "success" having thrown n minuses? 

Surely}hrowing n minuses has a probability of(%)" ? 

Ah but how many pluses do we need for success? That's easy, just 

Another Way? 

It did occur to us earlier, when we were tinkering with the tree 

diagram, that there was a certain amount of repetitiveness. At the 

starting point, we had gained and lost no fuel. But this wasn't the 

"only place where we were in that balanced position. And the same 

kind ofthing was true for the +2 state. Looking back at the diagram 

again we can see that +2 points occur all over the tree diagram. In 

fact, the tree diagram only has points which are labeled 0, ±2, ±4, 

±6. Can this "finiteness" be exploited in the "infiniteness" of the 

whole tree? 

We are interested in finding p, right, the probability that you escape, 

given that you start at a zero position on the tree. What happens 

from the zero state? Either you gain 2 kg or you lose 2 kg of fuel. 

1 
You do the first with a probability of 3 and the second with a 

2 
probability of 3 . So 

p= I (probability of escaping from a +2 point) 
3 

+ ~ (probability of escaping from a -2 point) 
3 

Call the probability in the first bracket p+2 and that in the second 

bracket p_
2

• So 

1 2 
P = J P+2 + 3 P-2· 

Is it possible that we can get expressions for p+2 and p_
2 

which lead 

us back top again? What is p+) 

Surely 

Well, that brought in another variable p+4. But 

r1)n+3 
n + 3. And that has a probability of\.) . Are we getting too many variables? Can we hope to find enough 

equations so that we can solve them? What's on TV tonight? 

So n minuses in successful throws, make a contrib.ution of 

(~y+' (2)" 
f" \.3) \.] to your chances of escaping. That must mean that 

your chances of escaping result from summing over all n. Let p be 

the chances of your escaping. 

We know that 

Hmm. But what is fn? 

See if you can solve things for yourself from here. You can then 

read on to see if your way is better than ours. 

Now p+6 may cause you a problem or two. It's the probability that 

you escape, given that you've won 6 kg of super neutron fuel. 

What is this probability? Surely it's just one. In that case 

P+2 = 
1 1 2 2 
- (-p+6 +- P+2)+ -p 
3 3 3 3 

1 2 2 
= 9 +9 P+2 + 3 p. 

If we could sort out p+2 we'd be in business for p. For what it's 

1 6 
worth we now know that P+2 = - +-p .. 

7 7 



Now let's go back to 

1 2 
p= 3 P•2 + )P-2· 

We can certainly eliminate P.2 from this equation. Can we get rid 
of p .2 too? 

1 2 
P-2 = - P + - p--. 

3 3 
1 2 

p--. = - P-2 + - P4> 
3 3 

Can we do anything with p_6? What is the probability that you escape 
given that you've just lost 6 kg of fuel? No way Jose! There's only 

one conclusion: P.6 = 0. 

But then we're in business: 

and 

So 

1 
p--. = 3 P-2, 

3 
P-2 = ?P· 

Now we are in business! 

Tidying up we get 

or 

1 
At last! p = -! 

9 

The chances of your escaping are not great. They're only.!. . Sorry, 
9 

we'll put our money on the Qwertians. 

Footnote 

We have to admit that our computer simulations gave us p = i 
too, so it looks as if that is the answer. You can see then why we 

were suspicious of the 12 year olds and their ~ ! Surely that's way 
56 

too high. Of course with random events you can never expect to 

get too near the ri~ht answer with r~latively few trials but 56 trials 
is starting to get big "enough". (The chance of getting 15 or more 

successful escapes from Qwerty out of 56 attempts turns out to be 
just less than 1 in 1000!) Is it likely that they unconsciously ignored 

some throws of the dice that weren't in their favour? 

One final thing. We did get the following expression for p earlier: 

Again if we tidy thls up a bit, we get 

1 .. ( 2)" We now know that p = - , so Lf..\- = S has to be 3. Does tl)is 
9 •=0 9 

help us to find fn? 

It's worth noting that 

(2) (2) 2 

S=1+3x\9 +9x\9 + .... 

We haven't calculated j. for n = 3, so we can only speculate what 

the next term is. But so far 

2 22 

S=1+-+-+··· 
3 9 
2 (2)

2 

=1+-+t- +··· 
3 \3 . 

Now if the world behaved nicely (i.e. the way we wanted it to be 

have), then S would be a Geometric Progression with a = 1 and 

2 
r = J. In that case 

s = _!!_ 
1-r 

=-1-
1-2/3 

=3 !!! 

It might just be a GP! If it were, what would fn be? Well 

( 2) •+I 

f •• ,\.9 
r=---

(2)" 
.l.\9 

That gives us ku = .2 xl = 3 . Could fn = 3" then? 
f. 2 3 

This raises two obvious questions. First, can we show that fn = 3"? 

If we could, then we would have found another way to get p. 

But second, does f" have to be 3"? After all, we know that S = 3 

2 
and we know that the sum of a GP with r = 3 also sums to 3. 

Surely two infinite sums with the same totals have to have equal 
terms? Please! 
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