


Given a quadratic function j(x) = ax 2 +bx+c, where a* 0, a, b, 

and c are real numbers, its discriminant, 0, is defined as 

b2 
- 4ac. In this note, we will look at some nice and interesting 

applications of the discriminant which are normally not included 

in a secondary school mathematics text book. 

First of all, let us look at the important properties of the. 

discriminant. 

We know that the roots of the quadratic equation 

ax2 +bx+c=O are 

Thus the nature of the roots which depends on 0, can be 

summarised as follows: 

In addition, in the quadratic equation ax2 +bx+c = 0, if a, b 
and care rational numbers, we have: 

(a) two roots are rational number if and only if Dis 

a perfect square. 
(b) two roots are irrational if and only if D is not a 

perfect square and 

0>0. 

We can also establish two important properties of a quadratic 

equation as follows: 

j(x)=ax
2
+bx+c=a(x+;a)' +(c-!:)=a(x+;a)' -(~). 

Since ( x+ ;a)' is always non-negative for all real x, we have: 

j(x):;:: -.!!.. (i.e. f has a minimum value) if a > 0 and 
4a 

j(x) $ - .!!__ (i.e. f has a maximum value) if a < 0. 
4a 

Thus j(x);,: a(x+ :ar- ( ~) > Ofor all x if and only if 0 < 0 and 

a> 0. Similarly, f{x) < 0 for all real x if and only if a< 0 and 0 

< 0. Hence, two very useful properties of a quadratic function 
can be summarised as follows. 

f(x) ;;:: 0 for all real x if and only if a > 0 and D s 0 

We shall explore some applications of these two properties by 

using the following examples. 

Finding an upper bound 

Example 1: A, 8 and Care the interior angles of a triangle 

ABC. 

. (A-B) (A+B) (A+B) Fmd an upper bound for cos -
2

- cos -
2

- - cos2 
-

2
- . 

Solution: We have A + 8 + C = n . 
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- -cos -

2
- cos -

2
- + y = 0. 

Treating this equation as a quadratic equation in cos( A;B) 

and since cos( A;B) is real, we have 

(A-B) D = cos2 
-

2
- - 4y;,: 0. 

Thus y $.!. cos2 (A-B) $.!.. Hence the upper bound for 
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. (A) . (B) . (C) 1 Upper bOUnd, We Can prOVe easily that: SID 2 SID 2 SID 2 $ g' 

where A, 8 and C are anlges of a triangle. 

Let y =sin( f) sin(~) sin(%} 

Then y = H cos( A;B)- cos( A;B)] sin( tr -(~+B)) 

=Hcos( A;B)- cos( A;B)] cos((A;B)) $ i· 

Proving inequalities 

Example 2: If x, y and z are real numbers, prove that 

x 2 -xz+z 2 +Jy(x+ y-z);;:: 0. 

Solution: Let f(x) = x 2
- xz + z2 + 3y(x+ y- z) 

= x 2 + x(Jy- z)+3y(y-z)+z2
. 

Treat f as a quadratic function in x and we check its discriminant. 

D=(3y-z)2 -4(3y2 -3yz+z2
) 

=-3y2 +6yz-3z 2 

=-3(y-z)2 $0. 

As the coefficient of x2 is 1, we can conclude that f(x);;:: 0 for all 

real x. Hence, x2 - xz + z2 + 3y(x + y- z);;:: 0. 



Determining the nature of a triangle 

Example 3: A B and C are the interior angles of a triangle 

ABC. If cotA+cotB+cotC=.J3, determine the nature of this 

triangle. 

Solution: We have 

1- cotAcotB 
cotC =cot(~r- (A+ B))= -cot( A+ B)= . 

cotA+cotB 

Substitute into the given condition, we have, 

cot A+ cotB + 1-cotAcotB = .J3. 
cotA+cotB 

Let a= cot A, b =cot Band c =cot C and then a, band care real 

numbers. We have: 

l-ab r;:; 
a+b+-- = v3, 

a+b 

a2 +(b-.J3)a+(b' -.J3b+l) = 0. 

This is a quadratic equation in a and as a is real, its discriminant 

must be non-negative. Now 

D = (b-.J3)2 -4(b 2 -.J3b+l) 

= -3b2 + 2.J3h -I=- (.J3b -1) 2
• 

I 
Hence we must have (J3b-1)2 = 0. Thus b = J3 . As (1) is 

1 
symmetric in a and b, we should have a= J3 also. Hence, 

A = B = !!.._ and triangle ABC is equilateral. 
3 

Conclusion 

Solving Equations 

Example 4: (1983 Suzhou Secondary Schools Mathematics 
Competition) 

. x 2 -2x+4 
Fmd real x such that A= 

2 
is an integer. 

x -3x+3 

S I . A x2 - 2x + 4 x +I W d f" d I o ut1on: = 2 = I + 
2 

• e nee to m rea 
x -3x+3 x -3x+3 

x+I 
x such that a = 2 is an integer. Cross multiplying, we 

x -3x+3 
have 
ax2 - (3a + 1 )x + 3a - 1 = 0. As x is real, D = (3a + 1 )2 - 4a(3a - 1) 

2 h. . 5-2./7 5+2./7 s· 
~O.so3a -10a-1~0.T 1Sg1ves---~a:<;---. mce 

3 3 
a is an integer, a can only take values 0, 1, 2 or 3. Substituting 

the values of a back into the above quadratic equation, we can 

solve for x which is -I, 2 ± .J2, ~ and '!.. . We can check that 
2 2 

these x values produce an integer A. 

Determining the nature of roots 

Example 5: Suppose that a quadratic equation ax2 + bx + c = 0 
has real roots. Show that if a, band care odd, then the roots 

are irrational. 

Proof: It suffices to prove that D is not a perfect square. As a, 

b and care given to be odd, so D = b2 - 4ac is an odd number. 

The square of an odd number is of the form Sk + 1 as (2n + 1 )2 

= 4n2 + 4n + 1 = 4n(n + 1) + 1 = Sk + 1. 

Let a = 2m ·f I, h = 2n + I and c =:. 2r + 1, 

so /) = (2n + 1) 2 -4(2m + 1)(2r ~ l) 
= 4n(n + 1) + 1- 4(4mr + 2(m +r) +I) 

=s["(n
2
+l)- 2mr-(m+r)]- 3 

which is not in the form of Bk + 1. Hence shown. 

This note has shown that the discriminant can be a very useful tool in solving some 

mathematics problems. We hope that these examples will inspire the students to better 
understand and apply the discriminant and its properties. 
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