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20. General Statement of the Principle of Inclusion and 
Exclusion 

In [7), we introduced the Principle of Inclusion and Exclusion 

(PIE) by first deriving the identity (see (17.2)) 

(20.1) 

for two finite sets A, and A
2

, and then extending it to the following 

identity (see {18.1}}: 

lA, uA, uA,I=~A,I+IA,I+IA,I)-~A, nA,I+IA, nA,I+IA, nA,I) 

+lA, nA, nA,I (20.2) 

for three finite sets A,, A
2 
and A,. Naturally, one would like to know 

whether (20.1) and {20.2} could be extended to an identity involving 

any n(~ 2) finite sets A 1 A 2
, ••• , An, and if so, what identity one would 

get in general. The main objective of this article is to deal with this 

problem. We shall first extend (20.2) to an identity involving four 

sets, and then by observing these special cases, we will obtain the 

general statement of the PIE for any finite sets. Finally, two examples 

showing the application of this general statement will be given in 

the subsequent sections. 

Suppose that four finite sets A
1
, A

2
, A

3
, and A4 are given. By 

applying {20.1}, {20.2} and some basic laws for sets, we have 

lA, uA, uA, uA,I=I(A, uA, uA,)uA,I 

That is, 

=lA, uA, uA,I+IA.I-I(A, uA, uA,}nA,I (by (20.1) 

=lA, uA, uA,I+IA,I-I(A, nA,)u(A, nA,)u(A, nA,) 

=(IA,I+IA,I+IA,I-IA, nA,I-IA, nA,I-IA, nA,I 

+lA, nA, nA,I)+IA,HA, nA,I+IA, nA,I+IA. nA I) 

-lA, nA, nA,I-IA, nA, nA,I-IA, nA, nA,I 

+lA, nA, nA3 nA,I. (by (20.2) 

lA, uA, uA3 uA,I= ~A,I+IA,I+IA3 1+1A.IHA, r.A,I+IA, r.A31+1A, nA,I 

+lA, nA,I+ lA, r.A,I+IA3 nA,I) 

+(lA, nA, nA31+1A, nA, nA,I+IA, nA3 nA,I+ lA, nA3 nA,I) 

-lA, nA, nA3 nA,I. (by (20.3) 

Now, let us look at the identities (20.1)- (20.3) carefully and 

make some observations on the patterns of the terms on the right­

hand sides of the identities. 

For the sum of terms within the first grouping, we have: 

n Sum number of terms in 
the sum 

2 IA,I+IA,I 
2=G) 

3 IA,I+IA,I+IAJI 
3=C) 

4 lA, I+ IA,I+IAJI+IA.I 
4=G) 

For the sum of terms within the second grouping, we have: 

n Sum number of terms in 
the sum 

2 lA, nA,I 
2=G) 

3 lA, nA,I+IA, nA31+1A, nA31 
3=G) 

4 lA, nA,I+IA, nA31+1A, nA,I 
6=G) + lA, nA31+ lA, nA,I+IA3 nA,I 

For the sum of terms within the third grouping, we have: 

n Sum number of terms in 
the sum 

2 none 0 
3 lA, nA,nA31 

!=G) 

4 lA, nA, nA31+1A, nA, nA,I 
4=(;) + lA, nA3 nA,I+ lA, nA3 nA,I 

We also notice that the groupings alternate in sign, beginning with 

a(+) sign. 

Suppose now we are given n finite sets: A,, A
2 

, ••• , An. By 

generalizing the above observations, what identity do you expect 

for lA, uA, u··-uA.I? 

The first grouping should be the sum of ( ~) = n terms 

involving single set: 

in abbreviation, . 
L:IA,I. 
i=l 

The second grouping should be the sum of (;) terms 

involving intersection of two sets: 

lA, nA,I+IA, nA1 I+···+IA,_, nA.I; 

in abbreviation, 

i<} 

The third grouping should be the sum of (;)terms involving 

intersection of three sets: 

lA, nA, nA,I+IA, nA, nA,I+···+IA,_, nA,_, nA.I; 

in abbreviation, 

L:IA, nA1 nA.i . 
l< j<k 

Likewise, the forth grouping should be the sum of (:)terms 

involving intersection of four sets; 

L lA, nA1 nA. nA11; 
i<j<k<l 

and so on. 



Bearing in mind that the groupings alternate in sign, 

beginning with a{+) sign, one would expect that the following holds: 

lA, uA, u···uA.I=i: IA,I- L IAJ>Ajl+ L lA, nAj nA,I 
i=l i<j i<j<k 

{20.4) 

Indeed, it can be proved {for instance, by mathematical 

induction) that {20.4) holds for any n finite sets A
1
, A

2
, ••• , An; and 

{20.4) is regarded as the general statement for the PIE. 

21. Arrangements in a Row 

In this section, we shall show the first application of {20.4) 

by considering the following: 

Example 21.1 How many ways are there to arrange n(<! 2) married 

couples in a row so that at least one couple are next to each other? 

Denote then couples by H
1
, W

1
, H

2
, W

2
, ••• , Hn, Wn. Thus, when 

n = 4 for example, the following arrangements are possible: 

W,H1H 4W,H,H,w;w., H 4 H,W,W.H,w;H,H4 . 

Similarly, for Is i < j s n 

Thus 

We now leave it to the reader to show that 

L lA, nAj nA.I=(n)2' ·(2n-3)!, 
i<j<k 3 

and so on to obtain the following final result that 

!A, uA, U···uA.I=t, (-1}'+'(~}'·(2n-r)! 

For the case when n = 4, we have 

lA, u A, uA, uA.I=( :}·(8-1)!-G}2' ·(8- 2)!+(;} 23 
• (8 -3)! -( :} 24 ·(8-4)! 

=8. 7!- 24. 6!+32· 5!-16 · 4! 

=26496. 

Solving the above problem by dividing it into cases such as 22. Derangements 
exactly one couple are next to each other, exactly two couples are 

next to each other, and so on would be very complicated. Let us try In this section, we shall introduce an old problem on deck of 

to apply {20.4). cards. Two decks X, Y of cards, with 52 cards each, are given. The 52 

cards of X are first laid out. Those of Yare then placed randomly 

For each i = 1,2, ... ,n, letA; be the set of arrangements of the with one at the top of a card of X so that 52 pairs of cards are 

n couples such that H; and W; and are adjacent {next to each other). formed. The question is: what is the probability that no cards in 

The problem is thus to enumerate !A, uA, u ... uA.I. each pair are identical {i.e., having the same suit and rank)? This 

problem, known as "le problfme des rencontres" {the matching 

To apply {20.4), we compute each grouping on its right-hand 

side. 

. 
To compute LIA.I, we first consider !A,!. A, is the set of 

1=1 

arrangements of the n couples such that H
1 

and W
1 

are adjacent. 

This is same as arranging the 2n- 1 objects: 

H,w;, H,,W,, ... ,H.,W. 

in a row where H
1
W

1 
can be permuted in two ways: H

1
W

1 
and W

1
H

1
• 

Thus 

IA,I=2·(2n-l)! 

Similarly, IA,I=2 · (2n-1)! For each i = 2, ... ,n. Thus 

t,1~1=( ~} 2 · (2n -I)! 

To compute Ll~ nAjl, we first consider !A, nA,I. A, nA, 
«) 

is the set of arrangements of then couples such that H
1 

and W
1 

are 

adjacent and H
2 

and W
2 
are adjacent. This is same as arranging the 

2n - 2 objects: 

H,w;,H,W,,H,,W,, ... ,H.,W. 

in a row where both H
1
W

1 
and H

2
W

2 
can be permuted by themselves. 

Thus 

!A, nA,I=22 ·(2n-2)! 

problem), was introduced and studied by the Frenchman Pierre 

REmand de Montmort {1678-1719) around 1708. The number of 

ways of distributing the cards of Y to form 52 pairs of cards with 

those in X is clearly 52! Thus, to find the desired probability, we 

need to find out the number of ways of distributing the cards of Y 

such that each card in Y is placed at the top of a different card in X. 

Instead of solving the above problem directly, let us 

generalize it and consider the following more general problem For 

each positive integer n, let Nn= {1,2, ... ,n}. A permutation a1ar.an of 

Nn {see Section 4 [2]) is called a derangement of Nn if a; ot- i for each i 

= 1,2, ... ,n. Thus 54132 is a derangement of N5 but 51342 and 3.2.154 

are not. For n = 1,2,3,4, all the derangements of Nn are shown in 

the following table. 

n derangements 
I none 
2 21 
3 231,312 
4 2143,2341, 2413, 

3142, 3412, 3421, 
4123,4312,4321 

Let Dn denoe the number of derangements of Nn . It follows from 

the above table that D
1 
= 0, D2 = 1, D

3 
= 2 and 0 4 = 9. Returning back 

to the matching problem, it is now clear that its answer is given by 

D, 52!. How to eva luteD" for each n? After some thought you may 

realize that this is not a trivial problem. Well, we are given a good 

opportunity to show our second application of PIE. 

Before we proceed any further, let us first derive an 

equivalent form of {20.4). 



For a subset A of a univeral set 5, let A denote its Thus, 
complement. It was pointed out in [7] that (20.2) is equivalent to 
the following: For any subsets A,, A2, A3 

of 5, 

In general, for any n(;? 2) subsets A,, A2, ... , An of 5, one can show that 
(20.4) is equivalent to the following: 

j"A, nA2 n···nA.j=ISI-IA, uA2 u ·· ·uA.I 

=lSI- f. IA,I+ L lA, nAi l- L lA, nAi nA.I 
jc:o ) i<j i< j<k 

(22.1) 

We shall now evaluate On by applying (22.1). Let us first 

identify what the universal set is. We are now concerned with 
derangements, which are special types of permutations of Nn . So, 
let the universal set 5 be the set of all permuations of Nn. 

For each i = 1 ,2, ... ,~ let A1 be the set of permutations a ,a2 ... an 
in 5 such that~1 = i:.... Thus A, i~the set of permutations in 5 such that 
a

1 
>" i and so A, n A2 r--. .. ·n A. is the set of permutations in 5 such 

that a1 ,.,_ i for all i = 1 ,2, ... ,n, which is exactly the set of derangements 

of Nn . We thus have 

To evaluate On by (22.1), we evalute each grouping on the right­
hand side of (22.1). Clearly, as 5 is the set of all permutations of Nn 

, we have lSI = 111!. 

Observe that A, is the set of permutations of the form 
1a2ar.an. Thus Similarly, lA, I= (n-1)! for each i = 2, ... ,n, and so 

iiA,I = 11 · (11 - l)! = (
11

) · (11-l)! 
~ I 

As A, n~ is the set of permutations of the form 12a
3 

••• an , 

we have lA, nA2 1 = (11-2)! Similarly, lA, nAil= (11-2)! 

for all i, j E {1,2, ... ,n} with i <j, and so 

L jA, nAi j = (11-2)! 
i< j 

We now leave it to the reader to show that 

and so on to obtain the following final result by (22.1) that 

= 11! - Gl(11-1)!+(;}(n-2)! - (;) ·(n-3)! 

+ ·· · +(- 1)" (:}(n-11)! 

Note that for r = 1,2, ... ,n, 

111 111 
-------·----- (11 - r )! = __:_ . 
r!(n - r)! r! 

n! n! 11! • 11! 
D =11!--+---+ ···+{-1)-

" 1! 2! 3! n! 

= n! 1- -+- - - + · ·· + {-1) - . ( 
1 1 1 .1) 
1! 2! 3! n! 

Suppose we generate a permutation of N nat random. The 

D. 
probability that this permutation is a derangement is given by 

11! 

which by the above result, is 

D. =1-..!_+..!_ _ ..!_+·· ·+(- 1)" ..!_ . 
n! 1! 2! 3! 11! 

D 
When n gets larger and larger, it is know that the quotient ~ 

11 . 

I 
gets closer and closer to -("'0.367), where the constant e, called 

e 

. ( 1 )" the natural exponential base, is defined by e=hm 1+-
,. ..... co n 

It is known that e"' 2.718281828459045. (The letter 'e' was chosen 
in honor of the great Swiss mathematician L. Euler (1707-1783) who 
made some significant contributions to the study of problems related 
to the above limit.) 

Problem 22.1 Show that the number of integer solutions to the 
equation (see Section 8 [3]) 

such that 0 :o; x, :o; 9 for each r = 1,2, ... , 11 is given by 

± {- 1)' ( 11)(10(11 - r )J· 
r=O r 10 

Problem 22.2 Each of ten ladies checks her hat and umbrella in a 
cloakroom and the attendent gives each lady back a hat and an 
umbrella at random. Show that the number of ways this can be 
done so that no lady gets back both of her possessions is 

10 (10) ~ (- 1)' r {(10-r)!Y . 

Problem 22.3 Show that the number of onto mappings (see Section 

19 [7]) from Nm to Nn, where m ~ n ~ 1 , is given by 

Probelm 22.4 For r = 1,2, ... ,2000, let A, be a set such that lA, I= 44. 

Assume that lA, nAA = 1 for all i,j E {1, 2, ... , 2000}with i>"j. Evaluate 

(Ans . . 86001) 
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