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17. The Principle of Inclusion and Exclusion 

In Section 1 of[1], we introduced the Addition Principle (AP) which was expressed in 
terms of sets as follows: 

If A and B are disjoint finite sets, then lA u B I= !AI+ IB I· ( 17.1) 

In the above statement, A and B are assumed to be disjoint, written An B = <!>. 

i.e. A and B have no elements in common. Can we express lA uBI in terms of 

!AI and IBI regardless of whether A and Bare disjoint? In counting the elements in 

A u B, we may first count those in A and then those in B. In doing so, any element in 

A n B (if there is) is counted exactly twice. Thus to get the exact count of lA u Bl, the 

number lA n Bl should be deducted. It follows that 

(17.2) 

This result can also be seen intutively with the help of the Venn diagram ofFigure 17.1. 

Figure 17.1 

Note that (17 .1) is a special case of ( 17 .2) as ( 17.1) follows from ( 17 .2) if we assume that 
AnB = 4> . 

Identity (17.2) is a simplest form of a principle called the Principle of Inclusion and 
Exclusion (PIE), which is a very useful and powerful tool in enumeration. First of all, let us 
show two applications of(17.2). 

Example 17.1. Find the number ofintegers from the set {1,2, . . . ,1000} which are divisible by 3 

or 5. 

The integers which we are looking for are 3, 5, 6, 9, 10, 12, 15, 18, 20, ... , 999, 1000. 
How many are there? 



Let us try to present the solution more formally, and so we let 

s = {1,2, ... ,1000}, 

A={xESix isdivisible by3}, 

and B = {x E SIx is divisible by 5}. 

It is now clear that our task is to evaluate lA u Bl as Au B is the set of numbers in S which 

are divisible by 3 or 5. 

Before applying (17.2) to evaluate lA u Bl, we first introduce a useful notation. For a 

real number r, let Lr J denote the greatest integer that is smaller than or equal to r. Thus 

L3.15 J= 3, l
2

3
° J= 6, L 7 J=7. and so on. How many integers in { 1,2 ... , 10} are there which are 

divisible by 3? There are three (namely, 3, 6, 9) and note that 'three' can be expressed as l 1~ J. 

The number of integers in { 1,2, ... , 10} which are divisible by 5 is 'two' (namely 5 and 10), and 

note that 'two' can be expressed as ll~ J Indeed, in general, for any two natural numbers n, k 

with k::;; n, the number of integers in the set {1,2, ... ,n} which are divisible by k can be 

expressed as l% J 
We can now return to our original problem of evaluating lA uBI. To apply (17.2), we 

need to find IAI, IBI and lA 11 B I· Using the notation introduced above, we see that 

JAJ = l
1 0

3
°0 

J = 3 3 3 and JBJ = llO~O J = 200. It remains to find lA n Bl. What does A n B 

represent? Well, A n B is the set of integers in S which are divisible by both 3 and 5. ·How to 

evaluate JA 11 Bj? It seems that this problem is as hard as that of evaluating lA u Bl. Luckily, 

this is not so as there is a result in Arithmetic that can help us. Let a, b be any two positive 
integers. It is known that an integer is divisible by both a and b when and only when it is 
divisible by the LCM (least common multiple) of a and b. It thus follows that A 11 B is the set 

of numbers in Swhich are divisible by the LCM of3 and 5. As the LCM of3 and 5 is 15, we 
conclude that 

A n B = {x E S I x is divisible by 15 }. 

Thus JAnBJ=l 1 ~~0 J= 66. 
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Finally, by (17.2), we have 

=333+200-66=467. 0 

Example 17.2. Find the number ofpositive divisors of at least one ofthe numbers 5400 and 
18000. 

In Section 3 of[l], we discussed the problem of finding the number of positive divisors 
of a natural number and stated the following relevant result: Let n ~ 2 be a natural number. If 
n = p;• p;1 

... p;•, where pi>p2 , ... ,pk are distinct primes, then the number of positive 

divisors ofn is (m1 + l)(m2 + 1)· ··(mk + 1). We shall see that this result will play an important 

role in solving our problem. 

Let A ={x E NIx is a divisor of 5400} and B ={x EN I x is a divisor of 18000} . 

Clearly, our task is to evaluate lA uBI. To apply (17.2), we need to count 

IAI, IBI and IAnBI. 

Observe that 

and 

Thus, applying the result stated above, we have 

IAI=(3 + 1)(3 + 1)(2 + 1)=48 

and IBI=(4 + 1)(2 + 1)(3 + 1) =60. 

What does A n B represent? By definition, A n B is the set of common positive 

divisors of5400 and 18000, and so it is the set ofpositive divisors ofthe LCM of5400 and 
18000. Since LCM {5400,18000}=LCM {23

• 33 
• 52

, 24 .3 2
• 53 }=23 

• 32 ·5 2
, it follows that 

Hence, by n7.2), we have 

IAnBI=(3 + 1)(2 + 1)(2+1) = 36. 

lA u Bl =I AI+ IBI-IA n Bl 

=48+60-36 

=72. 0 



Problem 17.1. Find the number of integers from the set {300, 301, .. . ,1000} which are 
multiples of 6 or 9. 

Problem 17.2. How many positive integers n are there such that n is a divisor of at least one 

ofthe numbers 1040
, 2030 ? (Putnam, 1983). 

18. An Extension 

Formula (17.2) provides an expression for lA u Bl . We shall now apply it to derive an 

expression for lA u B u q where A, B and C are any three finite sets . 

Observe that 

IAuBucj = IAu(BuC)I 
= IAI+IBuC 1-IAn(BuC)I (by (17.2)} 

= IAI+IBuCI-I(AnB)u(AnC)I 
= IAI+IBI+IC l-IB nCI-(IA nBI+IA ncj-I(A nB)n(A nC)I) (by (17.2)) 

= IAI+IBI+IC 1-(IAnBI+IA nCI+IBnC I)+ lA nB nC 1-

That is, 

1.---IA_u_B_u_C_I =-IA-1-+1-BI_+_IC-1---,-~A-n_B_I_+I_A_n_C_I +-IB_n_C~I)+-IA_n_B_n_C_I· --(1-8.---.,1) I 

We shall now show an application of(18 .1). 

Example 18.1. Figure 18.1 shows a 4 by 8 rectangular grid with two specified corners p and q 
and three specified segments uv, wx and yz. 

q 

y z 

w X 

u v 

p 

Figure 18.1 

Find in the grid 

(i) the number of shortest p - q routes; 
(ii) the number of shortest p - q routes which pass through wx; 
(iii) the number of shortest p - q routes which pass through at least one of 

the segments uv, wx and yz; 
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(iv) the number of shortest p - q routes which do not pass through any of 
the segments uv, wx and yz. 

(i) The problem of counting the number of shortest p - q routes in a rectangular grid was 
discussed in Example 6.1 [3]. Employing the idea developed there, it can be shown that 
the number of shortest p- q routes in the grid ofFigure 18.1 is given by 

(4:8) = c:J . 
(ii) As shown in Figure 18.2, a shortest p- q route passing through wx consists of a shortest 

p - w route (in a 2 by 3 grid), the segment wx and a shortest x - q route (in a 2 by 4 grid). 
Thus the number of shortest p - q routes passing through wx is given by 

q 

w X 

p 

Figure 18.2 

(iii) The counting is more complicated in this case. We introduce three subsets of the set of 
shortest p- q routes required. 

Let A (resp., B and C) be the set of shortest p- q routes which pass through uv ( resp., wx 

and yz). We note that the answer we are looking for is not IAI +IBI + lcJ as the sets A, B, Care 

not pairwise disjoint. The desired answer should be lA u B u Cl, and this gives us a chance to 

apply (18.1). To apply (18.1), we need to evaluate each term on the right-hand side of(18.1). 

First, applying the idea shown in the solution of part (i), we have 

IBI -- (25) (62) (as shown in part (ii)), 

and ICI = (3; 4) c: 3) = 4G} 



Next, let us compute !An B!, !An q and !B n q. Observe that An B is 'the set of 

sh?rtest p- q routes passing through both uv and wx. Any such shortest p- q route consists 
of a shortest p - ·u route, the route uvwx and a shortest x - q route. Thus 

!AnBI = G} 1· (~) = 3(~} Likewise, we obtain IBnCj =G)(:)= 4G} And each 

route in An C consists of a shortest p - u route, the segment uv, a shortest v- y route, the 

segment yz and a shortest z - q route, which gives !A n q = G) G) (:) = 36 . 

Finally, we evaluate !A n B n q. Each route in An B n C is a p - q route consisting 

a shortest p - u route, the route uvwxyz and a shortest z - q route. Thus 

IAnBnCj =G)(:)= 12. 

We are now in a position to evaluate !A u B u q. By ( 18.1 ), 

= 349 . 

(iv) Before solving part (iv), let us introduce a set notation. SupposeD is a subset of a finite 
setS. We denote by S \D the set of elements inS but not in D ; i.e., 

S\D = {xESix~D}. 

It follows immediately that 

IS \DI = ISI - IDI .. (18.2) 

Let's return to part (iv) . LetS be the set of shortest p- q routes in the grid of Figure 
18.1. Then the problem in (iv) is to evaluate IS\ (Au B u C)l , which is equal to 

lSI-lA u B u q by (18.2). By (i), we have lSI = c:) and by (iii), !Au B u C! = 349 . 

Thus the desired answer for (iv) is c:J- 349 = 495- 349 = 146. 0 

Problem 18.1. A group of students took examinations in Chemistry, Mathematics and Physics. 
Among them, 12 passed Chemistry, 15 Mathematics, and 10 Physics; 8 passed both Chemistry 

and Mathematics, 5 both Chemistry and Physics, and 6 both Mathematics and Phystcs. There 
were 20 students who passed at least one of the three subjects. Find the number of students 
who passed all three subjects. 
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Problem 18.2. Find the number ofintegers from the set {1,2, .. . ,1000} which are 
(i) divisible by at least one of 2, 3 and 5; 
(ii) divisible by none of 2, 3 and 5. 

Problem 18.3. The following figure shows a 5 by 9 rectangular grid with two specified corners 
p and q and three specified segments ab, cd and ej Find in the grid 

(i) the number of shortest p - q routes; 
(ii) the number of shortest p - q routes that pass through at least one of the 

segments ab, cd and ej, 
(iii) the number of shortest p- q routes that do not pass through any ofthe 

segments ab, cd and ef 

q 

e f 

d 

a b c 

p 

19. An Equivalent Form 

In the solution of Example 18.1 (iv), we evaluated IS\ (Au B u C)l using ( 18.1) and 

(18 .2). In this section, we shall derive an explicit expression for IS\ (Au B u C)l and show an 

application of this formula. 

In what follows, let S be a finite set which is 'very large' in the sense that all the sets that 
we shall consider in a problem are subsets of S. In mathematics, we call such a set S a 
universal set. For instance, in Example 17.1, the universal set is { 1,2, .. . ,1000}; in Example 
17.2, the universal set is the set of natural numbers; and in Example 18.1, the universal set is the 
set of shortest p - q routes in the grid of Figure 18.1. 

Let A ~ S . We write A for S \A, and call A the complement of A. In the study of 

sets, there are two very important laws relating the set operations 'union', 'intersection' and 
'complementation' . They are called De Morgan's laws and are stated below. 

For A, B ~ S, · AuB =An B 

AnB=AuB . 
(19.1) 

Let A, B, C be any three subsets of S. We shall see that the set S \(Au B u C) that we 

considered in Example 18.1 (iv) can be expressed as An B n C. Indeed, 



S\(AuBuC)= AuBuC 

= (AuB)uC 

=AuBnC (by (19.1)) 

=A nB nC. (by (19.1)) 

It follows that jAnBnCJ = JS\(AuBuC)J = JSJ-JAuBuCJ Thus, by(18 .1), we 

obtain 

We have just seen how (19.2) was derived from (18 .1). It is not difficult to see also that (18.1) 
can be derived from (19.2). We say that these two identities are equivalent. 

Now, let X= { 1,2, ... ,m} and Y = { 1,2, ... ,n}, where m, n E r.J . Recall (see Problem 
11.5 [4]) that a mapping f: X~ Y is a rule that assigns to each element x of X a unique 

element f (x) in Y. In this case, we say that x is mapped to f (x) under f, and call f (x) the 
image of x under f . A mapping f : X ~ Y is l-1 (or injective) if f (i) :;:. f (j) in Y 

whenever i :t:. j in X. A mapping f : X~ Y is onto (or surjective) if for each bEY, there is 
a EX such that f(a) =b. Clearly, ifthere is a I- I mapping f : X~ Y, then m $ n; and if 

there is an onto mapping f: X~ Y, then m ~ n. Four mappings are shown in Figure 19.1. 

Observe that / 1 is neither 1 - 1 nor onto; f 2 is 1 - I but not onto; / 3 is onto but not I - l; 

and / 4 is both 1 - 1 and onto. 

Figure 19.1 

The problems of counting the number of mappings and the number of I - 1 mappings 
were proposed in Problem 11 .5 [ 4]. Let us reconsider these problems here. Let X= {I ,2,3} 
and Y = { I,2,3,4,5} . How many mappings are there from X to Y? There are three elements in 
X, and each ofthem can be mapped to one of the five elements in Y. Thus the number of 
mappings from X to Y is given 5 · 5 · 5 = 53 

. How many I - I mappings are there from X to 

Y? The element' 1' in X can be mapped to one of the five elements in Y (5 choices). The 
element '2' in X can be mapped to one of the remaining four elements in Y ( 4 choices; excluding 
the image of '1 '). Finally, the element '3' in X can be mapped to one of the remaining 3 
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elements in Y (3 choices; excluding the images of '1' and '2'). Thus the number of 1 - 1 
mappings from X to Y is given by 5 · 4 · 3. Indeed, in general, we have: 

Suppose X= {1,2, ... ,m} andY= {1,2, ... ,n} . 

Then (i) the number of mappings from 
X toY is given by nm; 

and (ii) the number of 1 - 1 mappings from X to Y 

(19.3) 

is given by n(n-1)···(n -m + 1) where m ::;n. (19.4) 

What can be said about the number of onto mappings from X to Y? It is interesting to 
note that this problem is not as straight forward as those of counting the numbers of mappings 
and 1- 1 mappings. In the following example, we shall see how identity (19.2) is used to tackle 
this more difficult problem. 

Example 19.1. Let X= {1,2,3,4,5} andY= {1,2,3}. Find the number of onto mappings from 
XtoY. 

LetS be the set of mappings from X to Y. We shall now introduce three subsets A, B, C 
of S as follows. Let A be the set of mappings from X to Y \ { 1 } , B the set of mappings from X to 

Y\{2}, and Cthe set ofmappings from X to Y\{3} . What do the sets A, B and C 
represent? Well, A is the set of mappings from X to Y which contain '1' in Y as an image, 

B is the set of mappings from X to Y which contain '2' in Y as an image, and C is the set of 

mappings from X to Y which contain '3' in Y as an image. It follows that A n B n C is the set 

of mappings from X to Y which contain ' 1 ', '2' and '3' in Y as images; that is, A r1 B r1 C is the 

set of onto mappings from X to Y. Thus our task here is to evaluate lA n B n Cl. We can 

therefore apply (19.2)! 

Since Sis the set of mappings from { 1,2,3,4,5} to { 1,2,3 }, by (19.3), lSI = 35
. Since A 

is the set of mappings from { 1,2,3,4,5} to {2,3}, by (19.3) again, IAI = 25
. Likewise, 

IBI =ICI = 25
. As A nB is the set of mappings from {1,2,3,4,5} to {3 }, by (19.3) again, 

lA r1 Bi = 15 = 1. Similarly, lA n q = IBn q = 1. Finally, observe that An B r1 C is the set 

ofmappingsfromXto Y\{1,2,3} (=<j>). Thus AnBnC = <j>.and so IAnBncj = 0. 

Now, by (19.1), we have 



We have seen in the above how Addition Principle (17.1) can be generalized to (17.2), and in 
turn (17 .2) can be extended to (18.1 ); and moreover, we have derived an equivalent form ( 19 .2) 
of(18.1). In the next issue ofthe Medley we shall introduce a more general form of(PIE) 
which deals with any n subsets, where n ~ 2, and we shall see how it can be applied to solve 

some interesting problems. 

Problem 19.1. Seven distinct objects are to be put into three distinct boxes. Find the number 
of ways this can be done if 

(i) there is no restriction; 
(ii) no box is empty. 

Problem 19.2. LetS be the set of3-digit numbers abc such that a, b, c E {1,2, .. . ,9} and a, b, 
care pairwise distinct. (Thus, 489E S, 571ES, but 313 ~ S and 507 ~ S .) Find the number 

of members abc inS such that a~ 3, b ~ 5 and c ~ 7. 

Problem 19.3. Find the number of integer solutions to the equation x + y + z = 12 where 
O~x~4, O~y~5 and O~z~6. (SeeSection8of[3].) 

Problem 19.4. A 5-digit ternary number is a number x1x2x3x4 x5 where X; = 0, 1 or 2 for 

each i = 1, 2, ... , 5. Thus, 00000, 01001, 21022, 11002, etc, are 5-digit ternary numbers. Find 
the number of5-digit ternary numbers in which each of the '0', '1' and '2' appears at least once. 

Problem 19.5. Two scouts x1 , x 2 from School X, three scouts y1 , y 2 , y 3 from School Y 

and four scouts z1, z2 , z3 , z4 from School Z get together in a meeting. In how many ways 

can they be arranged in a row if not all scouts from the same school are allowed to form a single 
block in the row? (For instance, x1 z3 z 2 y, y 3 x 2 y 2 z1 z4 is allowed, but 

z1 z4 y 1 y 2 X 2 x1 y 3 z3 z2 and z 4 z3 x1 y3 y 1 y 2 x2 z1 z2 are not allowed.) 

Answers 

Problem 17.1. 156 

Problem 181. 2 

Problem 18.3. 

Problem 17.2. 2301 

Problem 18.2. (i) 734 (ii) 266 

(i) c:) = 2002 

(ii) (~)(:)+G)(~)+ c:) . 3 _ (;)(~)_G). 2 . 3 

_(;)G). 3 + (;) . 2. 3 = 1089 

(iii) 913 
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Problem 19.1. (i) 37 (ii) 3 7 
- 3 . 2 7 + 3 = 1806 

Problem 19.2. 9. 8. 7-3.8. 7 + 3. 7-1 = 356 

Problem 19.3. c;J- (~)- GJ- GJ + GJ + GJ = 10 

Problem 19.4. 

Problem 19.5. 9! -(2!8!+3!7!+4!6!) + (2!3!6!+2!4!5!+3!4!4!)- 2!3!4!3! 
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