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One of the fi rst basic facts you learn for your 0-levels is the 

formula for the sum of a geometric progression, and its 

genera lization, the formula for the sum of a geometric series. 

But if you stop and think for a minute, you'll realize that some 

pretty deep mathematics lies behind these and other infinite 

series, and the greats of years gone by had to think very carefully 

and critically before they came up with what we accept as fact 

today. 

Infinite series combine the very simple notion of addition, which 

you learn in Primary One, with the notion of infinity, which of 

course, as mere humans, we will never be able to fully grasp, 

and can only approximate with our favorite Greek letter £ and 

our favorite letter for representing really large numbers, N. Lest 

you think only dreamy pure maths type use this subject, actually, 

infinite series are powerful tools used all the time in applied 

maths, physics, and engineering. 

DEFINITION OF INFINITE SERIES 

1. An infinite sequence is an infinite sucession of numbers which 

is usually given by some rule. 

EXAMPLE 1 

1, 4, 9, 16, ... , n2
, ... , where n is a positive integer, is an infinite 

sequence. The notation " ... " at the end of the sequence means 

that the sequence cont inues ad infinitum, i.e. w ithout end. 

2. If a1, a2, ay ... , a", ... is an infinite sequence, the associated 

infinite series is 

or, to save writing, 

Ia or simply Ia . 
n=l n n 

Don't let the """" and " I " scare you. They are just the 

mathematical notations used to denote infinite series. 

Note that I is the Greek letter for "upper-case 5" which is 

the first letter of "Sum". 

EXAMPLE 1 (revisited) 

1 + 4 + 9 + 16 + ... + n 2 + ... is the infinite ser ies corresponding 

to our first example. 

EXAMPLE 2 

Let a and r be fixed rea l numbers. Then a + ar + ar2 + ar3 + ... 

+ ar" + ... is ca lled the geometric series with ratio rand constant 

multiple a. 

HOW TO SUM AN INFINITE SERIES 

How do we compute the sum of our infinite series, or, more 

precisely, how do we define such a sum in the first place? Here 

we see the fundamental difference between finite and infinite 
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sums: a finite sum can be computed by doing a finite number 

of addition operations - for a sum of n numbers, we need to 

carry out n- 1 addition operations. But for infinite sums, what 

can we do? Clearly, we cannot keep adding numbers with a 

calculator forever. 

Let us consider Example again. It can be shown in several 

different ways that for a fixed positive integer n, 

1 4 9 2 _n(n+1 )(2n+1 ) 
+ + + ... + n - 6 

If you have not seen this formula, try to prove it at home. (Hint: 

the method of mathematical induction gives one proof). 

In today's mathematics, we define the "sum" of an infinite series 

by a " limiting" process: 

Given the infinite series 

we let sn denote the sum of the first n terms of the series, 

Now, if we consider the NEW sequence of partial sums, 

we can try to see if the elements in this new sequence get closer 

and closer to some fixed (and finite!) real number L as we let 

the positive integer n get larger and larger. The real number L 

to which the sequence of partial sums tends, if it exists, is called 

the limit of the sequence. 

DEFINITION 

We say the series Ian converges to the sum L if the sequence 

of partial sums {snl tends to a finite limit L, i.e., if we can get 

s"as close as we want to L if we taken large enough. Otherwise, 

we say that the series Ian diverges. 

Going back to Example 1, we see that the series 

1 + 4 + 9 + 16 + ... 

defined there must diverge. Why? Well, we've seen that the 

partial sum sn for this series is n(n + 1 ){2n + 1 )/6 so that this 

particular sn tends to infinity, i.e. increases without bound, as n 

gets larger and larger. 

THE GEOMETRIC SERIES 

Let's consider the geometric series a+ ar+ ar2 + ... + ar" + ... , 

where a and r are fixed real numbers, with r not equal to 1. 

Recall from your 0-levels the formula for an geometric 

progression: 

If a and r are fixed real numbers, r not equal to 1, 



Therefore, the partial sum s" for this series is given by the formula 

s =a~ 
" (1 - r) 

for r not equal to 1. 

Now whether or not this geometric series converges depends on 

the size of r. In particular, by considering how r" + 1 changes as 

n increases, we can prove the following theorem: 

THEOREM 

The geometric series a+ ar+ ar2 + ... with a not equal to 0 

converges to the value a/(1 - r) for lrl < 1, and diverges for 

I rl :2: 1. 

For example, taking the following geometric series (where a= 1 

and r = 1/2): 

1 + 1/2 + 1/4 + ... + 1/(2)" + ... , 

our theorem above shows us that this series converges to the 

sum 1/(1 - 1/2) = 2 

And if we change this example and consider the case where 

a = 1 and r = -2, the theorem tells us that the associated series 

must diverge. 

We have yet to discuss the cases where r = 1 or r = -1 . If r = 1, 

then our geometric series becomes just 

a + a + a + ... + a + ... , 

so that the associated partial sum s" for this series is given by 

Therefore if a is not zero, this series must diverge. 

The case r = -1, on the other hand, plays an interesting role in 

the history of mathematics. Consider the geometric series with 

a = 1 and r = -1. The formulas for the partial sums of this series 

established by using the formula discussed above for geometric 

progressions gives 

That is, the partial sums for this series alternate back and forth 

between 1 and 0 do not approach any fixed limit, hence the 

series diverges. 

On the other hand, if we simply take the formula for the sum 

of a geometric series given in the above theorem, and plug in 

the value a = 1 we get 

1/(1- r) = 1 + r+ r2 + r 3 + .... 

Now substitute r = -1, to get: 

1/(1 - (-1)) = 1/2 = 1 - 1 + 1 - 1 + 1 - 1 + .... (*) 

Leibniz (1646-1716), the German mathematician best known as 

being co-inventor (with I. Newton) of the calculus, regrouped 

the terms in the right-hand side of (*) to obtain: 

1/2 = (1 - 1) + (1 - 1) + (1 - 1) + ... = 0 + 0 + 0 + ... = 0. (**) 

Leibniz was very pleased with this second equation and 

proclaimed, "Thus God created the universe from nothing." 

Do you have any thoughts on the problem in passing from the 

right hand side of (*) to the right hand size of (**)? 

ZENO'S PARADOX 

The ancient Greeks avoided using the notion of the infinite. 

One reason for this was that the Greek philosopher Zeno of Elea 

had put forth four paradoxes of motion which confounded 

thinkers for centuries! Zeno lived during the fifth century B.C. 

He was put to death in 430 B.C. because of his beliefs. He 

posed to his fellow thinkers four "paradoxes of motion". We 

discuss here the well-known "Achilles vs. the Tortoise" paradox 

and will ask you to use your critical thinking to solve this 

problem. 

Achilles was an ancient Greek hero famed for his strength and 

speed. The tortoise is well-known for its slowness of motion. Of 

course, in any one-on-one race of Achilles vs. the tortoise, 

Achilles would win, even if the tortoise were allowed a head 

start, wouldn't you think? Well, Zeno thought NOT! 

Suppose, for example, that Achilles is 10 times faster than the 

tortoise, and the tortoise has a 1 0 meter head start on Achilles. 

Tortoise 

Om STAGE 1 10m 

Om STAGE 2 10m 11m 

Om STAGE 3 11m 11.1m 

Achilles is always getting closer and closer to the tortoise, but 

the tortoise is always one stage ahead. Therefore, Achilles will 

never catch the tortoise, even though he runs ten times faster. 
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Zeno argued that Achilles would never be able to catch him, by 

the following reasons. By the time Achilles has travelled that 10 

meters, the tortoise would have travelled 1 meter, so would still 

be ahead of Achilles. In the time it takes Achilles to run that 1 

meter the tortoise would have crawled 0.1 meter, so would still 

be ahead of Achilles. Using this argument, Achilles is always 

getting closer and closer to the tortoise, but the tortoise is always 

one stage ahead of Achilles. Therefore, Achilles will never catch 

the tortoise, ever though he is 10 times faster! 

For centuries, scholars and non-scholars discussed Zeno's 

paradox. As late as the 19th century, some European scholars 

were arguing that Zeno was correct, and Achilles had lost the 

race! 

Can you think of a resolution of this paradox that uses the 

notion of infinite series? Or, would you like to try to come up 

with a rigorous argument that shows Zeno was correct? Read on 

for one explanation! 

RESOLUTION TO ZENO'S PARADOX USING 

INFINITE SERIES 

Gregory of St. Vincent (1584 - 1667) was the first to use the 

method of infinite series to argue against Zeno's paradox, as 

follows: 

Again, suppose Achilles is 10 times as fast as the tortoise, e.g. 

suppose Achilles runs 10 meters/sec. and the tortoise crawls 

1 meter/sec. If the tortoise has a 1 0 meter head start, then at 

time t = 0, Achilles' position at t = 0 is A(O) = 0, and the 

tortoise's position at t = 0 is T(O) = 10m. Achilles' position at 

time t = 1 sec is A(1) = 1Om, and the tortoise's position at time 

t =1 is T(1) = 11m. Continuing on with this argument, 

At "stage n", 

A(1 + 1/10) =11m, 

T(1 + 1/10) = 11.1m. 

A(1 + 1/10 + 1/10 2 + ... +1/10n) = 10 + 1 + 1/10 + ... + 1/1o n· 1
, 

and 

T(1 + 1/10 + 1/10 2 + ... +1/10n) = 10 + 1 + 1/10 + ... + 1/10n. 

So letting n --7 oo and using our formulas for geometric series, 

A(1 + 1/10 + ... + 1/10n + ... ) 

= T(1 + 1/10 + ... + 1/10n + ... ) 

= 70(1 + 1/10 + ... + 1/10n + ... ), 

i.e. A(1 0/9) = T(1 0/9) = 1 00/9, 

so that Achilles catches up with the tortoise after 10/9 seconds, 

at the 11 and 1/9 meter mark. 
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Om TIME: t = 0 10m 

Om TIME: t = 1 sec 10m 11m 

~ 
Om TIME: t = 1 + 1/ 10 sec 11.1m 

Om TIME: t = 1 + 1/10 + 1/100 + ... = 10/9 sec. 

HARMONIC SERIES 

From the example of the geometric series, you might guess that 

given a series a1 + a
2 

+... + an+ ... , if the terms an go to zero 

as n --7 oo then the series will converge. On the one hand, it is 

true that in order for the series above to converge, it is necessary 

that the terms an go to zero as n --7 oo, but surprisingly enough, 

just the terms going to zero is not a sufficient condition for the 

series to converge. The most well-known example of a divergent 

series whose terms tend to zero is the harmonic series 

1 + 1/2 + 1/3 + ... + 1/n + ... 

or in series notation, 

Din. 

Here, a" = 1/n, and of course 1/n goes to zero as n --7 oo. But, 

1 + 1/2 + ... + 1/n + ... diverges, since its associated sequence of 

partial sums increases without bound. 

Oresme (1323 - 1382) was the first to note that the harmonic 

series diverges, by grouping the terms as follows: 

Consider the partial sums s2 = 1 + 1/2 = 3/2, 

54= 521 = 1 + 1/2 + (1/3 + 1/4) 

~ 1 + 1/2 + (1/4 + 1/4) 

= 1 + 1/2 + 1/2 = 1 + 2/2 = 2, 

s8 = 523 = 1 + 1/2 + (1/3 + 1/4) + (1/5 + 1/6 + 1/7 + 1/8) 

~ 1 + 1/2 + (1/4 + 1/4) + (1/8 + 1/8 + 1/8 + 1/8) 

= 1 + 1 /2 + 1 /2 + 1 /2 = 1 + 3/2 = 5/2. 



In genera l, for any positive integer k it can be shown that 

s2k +, ?: 1 + k ; 1, which increases without bound as 

It fol lows that Din diverges (but, very slowly). 

STACKING BOOKS AND THE HARMONIC SERIES 

Suppose you were given an arbitraril y large number of books, of 

un iform size and weight. If you had unlimited free time, and 

had a ta ll enough ladder, it wou ld be possible for you to stack 

the books in such a way that the top book on the stack is shifted 

as far over to the right as you want (with respect to a fixed 

horizontal and vertica l ax is) from the hori zonta l position of the 

bottom book, without the books toppling over! 

How do you do this? Well , choose the amount of overhang you 

want: so if the books are 1 unit long, say you want N units of 

overhang . 

Suppose that we can get N units of overhang by stacking up n 
books. Now assume that you have stacked the (n - 1) top books 

in such a way as to get maximal overhang. In order to get 

max ima l overhang with n books, you place the already 

stacked (n - 1) books in such a way that the center of gravity 

of the stack of (n - 1) books is directly over the rightmost edge 

of the bottom book. So for example, if you are stacking 2 books, 

you can place the top book so that 1/2 of it hangs over the 

rightmost edge of the bottom book. If you are stacking three 

books, taking the top two books and stacking them as described 

above, then the center of gravity of these two books w ill occur 

1/4 units to the left of the right corner of bottom of the two 

books. So, when placing the top two books on the bottom book, 

you can arrange things so that the top book hangs 1/2 un it over 

the rightmost corner of the middle book, and the middle book 

hangs 1/4 unit over the rightmost corner of the bottom book, for 

a tota l overhang of 1/2 + 1/4 units. 

In general if you are stacking n books, you can arrange things 

so that the top book hangs 1/2 unit over the next book, the 

second book from the top hangs 1/4 unit over the third book 

from the top, ... the i'11 book from the top hangs 1/(2i) units over 

the (i + 1)'11 book from the top, and ... final ly, the (n - 1)'11 book 

hangs 1/ [2(n - 1)] un its over the n'11 and fina l book on the 

bottom. 

So, the tota l overhang from the right corner of the top book to 

the right corner of the n'" and bottom book is: 

1 
1/2 + 1/4 + 1/6 + ... + 1/ [2(n- 1)] = 2Sn.J 

where sn. 1 is the (n - 1 )'11 partia l sum of the harmon ic ser ies. 

Since we know the harmonic series diverges to infinity, we can 

get the overhang to be as large as we want! 

EXERCISE 

Prove that the center of gravity of the n books stacked as 

described above has its horizontal component occurring at 1/(2n) 

units to the left of the right-hand corner of the bottom book. 

EXERCISE 

How many books wou ld you need to get a 1-unit overhang? A 

2-unit overhang? 

Answers: 5 books and 32 books, respectively. 

MORE HISTORY ABOUT THE DEVELOPMENT OF 

INFINITE SERIES 

It was only in the 14th century that infinite series began to be 

commonly used, and even then, there were no formal definitions 

of divergence and convergence. Mathematicians such as Isaac 

Newton (1642-1727), Brook Taylor (1685-1731), Leibniz, Euler 

(1707-1783), and others manipu lated series very free ly to much 

mathematical advantage, without worrying too much about 

whether they converged or diverged. They generalized the notion 

of infinite series of real numbers to the notion of "power series", 

which were expansions in terms of the monomia ls, for especia lly 

nice functions, of x (these days known as analytic functions). 

The series expansions for the logarithmic and trigonometric 

functions, for example, gave rise to greater accuracy in the 

ca lcu lation of specific values of these functions, which in turn 

helped to promote advances in navigation. 

The mathematician Abel (1801-1829) clarified many aspects of 

the convergence and divergence of power series. He was very 

dubious about the use of divergent series in calculations : 

"The divergent series are the invention of the devi l ... by using 

them, one may draw any conc lusion whatsoever ... " . 

We have already seen an example of this with Leibniz' "creation 

of the universe from nothing''! 

It was the French mathematican A. Cauchy (1789-1857) who 

was the first to give a truly rigorous definition of the notions of 

convergence and divergence of series. He virtually "banned" the 

use of divergent series in proofs, and established his famous 

"Cauchy Criterion " for convergence of series. 

Cauchy's work was revolutionary for his day and made some of 

his colleagues very nervous indeed! For example, it is said that 

after Cauchy first presented his theory of series in a colloquium, 

Laplace (1749-1827) went into seclusion to check al l the series 
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in his massive book "Celestial Mechanics" which had recently 

been published. Fortunately for him, they all satisfied Cauchy's 

definition of convergence. 

OTHER IMPORTANT NAMES IN THE HISTORY 

OF SERIES 

J. Fourier (1768-1830): he developed the theory of Fourier series 

which are widely used in physics and engineering (e.g. in signal 

processing). 

K. Weierstrass (1815-1897): he laid the foundations of modern 

analysis as it is studied today. He cleared up many 

misconceptions by developing rigourously the notion of "uniform 

convergence" for series whose terms are functions (e.g., power 

series and Fourier series). 

P. G. L. Dirichlet (1805-1859): he studied Fourier series, which 

led him into foundations of the real number system. 

B. Riemann (1826-1866): he developed the famous Riemann 

zeta function, which has connections to the harmonic series. 

G. Cantor (1845-1918): his study of Fourier series led him into 

the study of all sorts of unusual sets, including the famous "Cantor 

set" . M 
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Why no Nobel Prize 
in mathematics? 

contributed by Yan Kow Cheong 

A century-old mathematical rumour runs as follows: 

Alfred Nobel (1833 - 1896), the founder of the Nobel 

Prize, didn't establish a Nobel Prize in mathematics 

because he wanted to retaliate against Gustav 

Magnus Mittag-Leffler (1846-1927), a likely winner 

at the time of inception of the Prize, who was 

reported to be having an affair with Nobel's wife. 

No doubt the gossip about a love affair aroused the 

interest of mathematicians, but the catch is that Nobel 

never married. 

Another version of this gossip claims that Mittage­

Leffler, a man of considerable wealth, antagonised 

Nobel. The chemist, afraid that Mittag-Leffler, a 

leading Swedish mathematician, might win a Nobel 

prize in mathematics, then refused to institute such 

a prize. 

Whatever the reason for the lack of a Nobel Prize, 

great mathematicians do not go unrewarded. Since 

1936, the Fields Medal, the equivalent of a Nobel 

Prize in mathematics in terms of honour if not in 

terms of financial reward, has been awarded every 

four years to outstanding mathematicians below the 

age of 40. Candidates are chosen based on their 

solution of difficult problems and the creation of 

new theories and methods which expand the fields 

of application of mathematics. 
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