GEOMETRY RECERELEN

On Menelaus’ Theorem

Hang Kim Hoo and Koh Khee Meng

In our preceding article [1], we introduced the celebrated Ceva’s Theorem and its converse which is stated as follows:
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The cevians AP, BQ and CR of

AABC are concurrent if and only if
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Three distinct points on a plane are said to be collinear if they
lie on a straight line. Given AABC, let X, Y and Z be,
respectively, points other than the vertices A, B, C, on the
lines formed from sides BC, CA and AB as shown in Figure 2.
Ceva'’s theorem and its converse provide us with a criterion to
determine whether three given cevians are concurrent. We
may ask: is there a criterion which will enable us to determine
whether the three given points as shown in Figure 2 are
collinear?

While Ceva’s theorem was established in the 17th century, a
positive answer to the above question was given two thousand
years ago by Menelaus of Alexandria (about 98A.D.). In this
article, we shall introduce this important result and also show
some of its applications.

Menelaus’ Theorem.

Let ABC be a triangle, and let X, Y and Z be points on the lines formed from BC, CA

and AB respectively as shown in Figure 2. If X,

e M)
ZB XC YA

Y and Z are collinear, then
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There are several different proofs of Menelaus’ theorem. In what follows, we
give two of them; the first proof applies the notion of area, and the second proof
uses the ratio theorem.

First Proof
We denote by (PQR) the area of APQR.

Consider Figure 3. As was shown in [1], we have

AZ _(AYZ)
7B (BY?)'
BX _ (BYZ)
XY

ahd e GXS LICYZ)

YA  (AYZ)

Thus AZ BX CY_(AYZ) (BYZ) (CYZ)
ZB XC YA (BYZ) (CYZ) (AY2)

=1, as required.

Second Proof

As shown in Figure 4, let D be the point on the line formed from CA such that
BD//XY. Then by the ratio theorem, we have:

AZ _ AY
ZB YD
and BX DY
Rt Py

Thus AZ BX CY_AY DY CY = 1, as desired. [J

ZB XC YA YD YC YA
We shall now give two examples to illustrate the use of Menelaus’ theorem.

Example 1

In Figure 5, ABC is a triangle with £ZB = 90°, BC = 3cm and AB = 4cm. D is
a point on AC such that AD = 1cm, and E is the mid-point of AB. Join D and
E, and extend DE to meet CB extended at F. Find BF.

Solution
Consider AABC. Then D, E and F are, respectively, points on the sides CA, AB
and BC, and by construction are collinear. By Menelaus’ theorem,

AE BF (D

B FC DA b

By assumption, AE = EB =2, DA =1 and FC = FB + BC = BF + 3. By
Pythagoras’ theorem,

AC = \BC* + AB* =37 + 4% = 5,

and so CD = AC - AD = 5 - 1 = 4. Substituting these data into (i) gives

2 BF 4_.
3. "BFE+32 1.

Solving for BF yields BF = 1.0
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In applying Menelaus’ theorem, we need to identify a trianlge and three collinear points respectively on its sides. (Thus, in
Example 1, we take AABC and the points D, F and F.) To simplify notation, in what follows, in Menelaus’ theorem we refer
to the lines YZX in Figure 2(a) and ZXY in Figure 2(b) as the transversals of AABC.

Example 2
In Figure 6, ABC is a triangle, X and Y are points on BC and CA respectively, and R is the point of intersection of AX and BY.

ot LAY AR BX .
Given YC = P and Rx =9 where 0 < p < g, express xc" terms of p and q.

Solution

Consider AAXC and its transversal BRY. By Menelaus’ theorem,

AR XB CY _ |
RX L BEmyAR 1
Thus BC AR Cv_4 C

’

XB RX YA p
ie, BX+XC_9

BX p
Y

It follows that X

1+ XA /

BX p

abudapss Yom g A B

BX p p Figure 6
e BX P

XEE NG

Let X, Y and Z be, respectively, points on the sides BC, CA and AB of AABC as shown in Figure 2. Menelaus’ theorem states
that if X, Y and Z are collinear, then equality (1) holds. Does the converse of Menelaus’ theorem also hold? That is, if X, Y
and Z are points such that equality (1) holds, are they always collinear? A positive answer to this question is given in the
following result.

: The Converse of Menelaus’ Theorem.

Let X, Y and Z be points on the lines formed from the sides BC, CA and AB of AABC
respectively.
if AZ BX CY

=~ =1, then X, Y and Z are collinear.
ZB XC YA

The proof of the above result is similar to the proof of the converse of Ceva’s theorem as given in [1]. We leave the proof of
the above result to the reader.

The converse of Menelaus’ theorem is very useful in showing the collinearity of three given points on a plane. Two examples
are given below.

M



Example 3
In Figure 7, the diagonals AC and BD of a quadrilateral ABCD meet at M in such a way that AM = MC and DM = 2MB. Suppose
that X and Y are points on MC and BC respectively such that

AC _BY

MX ~ YC

Show that the points D, X and Y are collinear.

Proof
First, we have DM _ DM _ 2MB (DM = 2MB)
BD BM+ MD 3MB 5
=2
3!
1.e., D_M B (i) A
BD 3°
Next, C—X=M=l[4§}-1 (AM = MO)
XM XM 2
= l (3) =1 [&_ J
2 MX B y C
ik Figure 7
2 ’
i.e., C_X=_1 (”)
M 2

Now, consider AMBC and the points D, X and Y. By (i), (ii) and using the assumption 5—2( =37

2

Bilofi MDosis | 4 (2,
S

YC XM DB

Hence, by the converse of Menelaus’ theorem, D, X and Y are collinear. ]

Girard Desargues (1591-1661), a French architect, discovered an important and interesting result relating the collinearity of
points and concurrency of lines on two triangles, which became a fundamental result in Projective Geometry. We shall now
state this result and prove it by applying both Menelaus’ theorem and its converse.

: Desargues’ Theorem.

Let ABC and A'B'C’ be two given triangles such that the
lines AA’, BB” and CC’ are concurrent, as shown in Figure 8.
Let X, Y and Z be, respectively, the points of intersection of
the lines AB and A’B’, BC and B'C’ and CA and C’A". Then
X, Y and Z are collinear.

Figure 8
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Proof

Observe that X, Y and Z are points on the lines formed from the sides AB, BC and CA of AABC respectively. Thus, to show
that X, Y and Z are collinear, by the converse of Menelaus’ theorem, it is enough to show that

AX BY CZ_
XB YC ZA

First, consider ANAB and its transversal A’B’X. By Menelaus’ theorem,

NAAX BB’
AA XB BN

=1. (i)

Next, consider ANBC and its transversal YB'C’. By Menelaus’ theorem,

NB' BY CC' _
BB YC CN

(ii)

Now, consider ANCA and its transversal Z’A’C’. By Menelaus’ theorem,

NC' . CZ AN

CC ZA AN

(iii)
Finally, the product of (i), (i) and (iii) gives

AX BY Z
XB., ¥C  ZA

’

as was to be shown. [

We end this article by giving the following final example, which is actually Question 3 of the 1989 Asian Pacific Mathematics
Olympiad. (Ten students from Singapore took part in this competition. Seven of them, Lam Vui Chiap, Lee Mun Yew, Loh Ngai
Seng, Ng Lup Keen, Yan Weide, Yeo Don and Yeoh Yong Yeow, managed to solve this question completely. The common feature
of their solutions was the use of Menelaus’ theorem. We present here an outline of one of these approaches. The reader is
invited to fill in any gaps.)

Example 4

Let A, A,, A, be three points in the plane, and for convenience, let A,= A,and A,= A,. For n=1, 2 and 3, suppose that
B, is the midpoint of A A and suppose that C is the midpoint of A B, . Suppose that A C and B A _, meetat D, and

n " n+1

that A B and C A _, meet at E . Calculate the ratio of the area of triangle D,D,D, to the area of triangle E E,E,.

e ai #e2

n+1

Solution
Our aim is to compute the values of 19,0, 0,) and (E,E,E,) , from which we can immediately determine the value of M
(AIAZAB) (A1A2A3) (El EZE3)

Consider AA,A,B, and its transversal A, D,C, (see Figure 9). By Menelaus’ theorem,

AZCZ . A3D] . B]Al
C2A3 D1Bl A1A2

(i)

AA2C2—1 dB‘A‘-l it follows from (i) that
sC2A3—3an /\1/\2_2’[ ollows from (I a
BD =L AD
1= = 3

and so B D, = 17 A,B, (ii)

Let G denote the centroid of AA A A,; then

g

Figure 9

GB, =1 AB,. (i)

1

Thus  GD, = GB, - B,D,

MZ',,"E{‘},"'“'
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Likewise, GD,

Il
I
&)
PN

and GD, = 2 GA,

2

It follows from (iv) and (v) that

AGD,D, ~ AGAA,,

and so
(GD]DZ)z{GQr X gr "
(GA,A) |GA) ~\7)° 49°
Likewise,

(GD,D,) _ (GD,D) _ 4

(GAA)  (GAA) 49

Combining (vii) and (viii) yields
(DID.’D3) - i

(AAA) - 49°

Next, consider AA A, B, and its transversal A,E C,. By Menelaus’ theorem,

AICI . A2A3 . % _

AL i
CA, AB, EA
As i and s 2

Eee 6T

b
we have AE = 3 BiE:s
2 2 3

and so A E, = 5 AB,= 55 GA, =
Thus GE = GA,-A[F, = GA - 3
imilart 2 d 2
Similarly, GE,= 5 GA, and GE, = 5

2
GA = £ GA-

(iv)

(vii)
(viii)

(ix)

S
SGA'

1

1 J

GA, -

Following a similar argument as given in the first part, we have

| i}

(AAA,)

L.

(EEE)='212=i
{ 258
Combining (ix) and (x) yields

(DIDZDZ) - é M

(E,E,E,) 49~
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