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Historical note 

Archeological records show that the ancient Babylonian civilization already knew how to 

solve quadratic equations. The cubic and quartic equations were subsequently solved 

algebraically in the sixteenth century; that is, their solutions were expressed by formulae 

involving only addition, subtraction, multiplication, division and the extraction of square 

roots and cube roots. So it was a great challenge to mathematicians to solve equations of 

higher degree algebraically until it was first shown in the nineteenth century by Abel , then 

by Galois, that it is not possible to solve a general quintic equation algebraically. The work 

of Galois is significant in that he associated a group to a given equation and found a 

criterion for solvability in terms of the solvability of the group, whereby the unsolvability of 

the general quintic was deduced as a special case. The present article demonstrates this 

idea: the solving of a cubic equation is broken down to solving a quadratic polynomial, 

extracting cubic roots and solving a system of linear equations, which amounts to the fact 

the group of a general cubic is solvable. Galois did not live to see the recognition of his 

celebrated work. His work was published more than ten years after his tragic death. 

The basic idea 

Let f(x) = x3 
- ax 2 + bx - c 

be a cubic polynomial and let and be the roots of f(x) = 0. It is well known that 

the relationship among the roots and coefficients can be described by 

{ 

e, + e2 + e3 = a 

e,e2 + ~e3 + e3e, = b (A) 

e
1
e

2
e

3 
- c 

In general, one does not expect to find the roots of f (x) = 0 by solving the above system 

of equations. It is, however, worthwhile to point out that the system (A) reveals the fact that 

without knowing the actual values of e, , e2 and ey one can still determine uniquely the 

values of e, + e2 + ey e,e2 + e2e3 + e3e, and e,e2e3 Hence, it is very natural to ask whether 

it is possible for us to determine, for appropriate A,, A
2

, A
4 

and A
5

, the values of 

and 

Set 

and 



Successfu I determination of A
1
, A

2
, A

4
, A

5
, A
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and A

6 
wi II 

consequently provide us the following system of linear equations: 

{ 

e
1 
+ e

2 
+ e

3 
= a 

e1 + A1e2 
+ A

2
e

3 
= A

3 

e1 + A4e2 + A5e3 = A6 

(B) 

This will of course enable us to write down the explicit formulae 

for e
1
, e

2 
and e

3 
if 

Permutations and Symmetric Polynomials 

Denote by I the set { 1, 2, 31. A permutation cr of the set I is a 

bijective function from I onto I itself. It is easy to see that there 

are altogether 6 permutations: 

<J
1
(1) = 1, crp) = 2, cr

1
(3) = 3, 

cr
2
(1) = 1, crp) = 3, crp) = 2, 

cr
3
(1) = 2, crp) = 1, crp) = 3, 

<J
4
(1) = 2, crp) = 3, crp) = 1, 

cr
5
(1) = 3, crp) = 1, crp) = 2, 

cr
6
(1) = 3, crp) = 2, cr

6
(3) = 1. 

(That is, cr
1 

fixes each of the digits 1, 2 and 3, cr
2 

sends 1 to 1, 
2 to 3 and 3 to 2, etc.) 

Let x
1
, x

2 
and x

3 
be three indeterminates. A monomial in x

1
, x

2 

and x
3 

is an expression of the form 

where a is a nonzero complex number and b, c, dare nonnegative 

integers. A sum of finitely many monomials (in x
1

, x
2 

and x) is 

called a polynomial (in x
1

, x
2 

and x
3
) . 

Let cr be a permutation on I. Then cr permutes the monomials in 

a natural way. Namely, for m = ax~x;x~, 

cr (m) = ax6 xc xd . 
0"(1) 0"(2) 0"(]) 

And in turn for each polynomial p = m
1 
+ m

2 
+ ... + mk where 

the m; 's are monomials, we define 
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Example 2 

Definition 

A symmetric polynomial is a polynomial p = p (x
1

, x
2

, x
3

) such 

that cr ; (p) = p for each i with 1 .:; i .:; 6. 

One sees easily that X 1 + x 2 + x
3

, x
1
x

2 
+ x

2
x

3 
+ x

3
x

1 
and x 1x 2

x
3 

are symmetric polynomials while x
1
x

2 
is not since 

And the following result is clearly true. 

Lemma 1 

Let p
1 

and p
2 

be symmetric polynomials. Then p
1 
+ p

2
, p

1
- p

2 
and 

p
1
p

2 
are symmetric polynomials. 

Denote by M
1

, M
2 

and M
3 

the symmetric polynomials X
1 
+ x

2 
+ xy 

X
1

X
2 
+ x,x

3 
+ x

3
x

1 
and x

1
x

2
x

3 
respectively. They are known as the 

elementary symmetric polynomials due to the following result of 

Newton. 

Theorem 2 

Every symmetric polynomial p(x
1
, x

2
, xJ can be expressed in 

terms of M1, M
2 

and M
3

. 
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= x

1 
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1
x
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2
x
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3
x

1
) 

2 
= M

1 
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Symmetric Polynomials Involving x1 + Bx2 + Cx3 

One sees easily that the polynomial x
1 
+ 8x

2 
+ Cx

3 
is symmetric 

if and only if 1 = 8 = C. But what if 8 and Care distinct from 

1, can one construct a symmetric polynomial which involves 

p = x
1 
+ 8x

2 
+ Cx

3
? This is a crucial step in Galois' construction. 

There are many different ways to construct such symmetric 

polynomials. Here is one of such constructions that turns out to 

be very useful to us. 

Let's consider how p is permuted by all the permutations on /: 

and 

<J
1
(p) = x

1 
+ 8x

2 
+ Cx

3
, 

cr
2
(p) = x

1 
+ 8x

3 
+ Cx2, 

cr3(p) = x2 + 8x
1 
+ Cxy 

cr
4
(p) = x

2 
+ 8x

3 
+ Cx

1
, 

cr
5
(p) = x

3 
+ 8x

1 
+ Cx2, 
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One can check easily that 

U (B, C) + V(B, C) 

and 

U (B, C) V(B, C) 

are symmetric polynomials where 

and 

V(B, C)= (x
1 

+ Bx, + Cx
3

) (x
3 
+ Bx

1 
+ Cx,) (x

1 
+ .Bx

3 
+ Cx

1
) 

By Theorem 2, we may write both U (B, C) + V (B, C) and 

U (B, C) V (B, C) into polynomials in terms of M
1

, M
1 

and M
3

• 

Replacing x1, x
1 

and x
3 

bye,, e
1 

and e
3 

respectively and using (A), 

we may further express both U (B, C) + V (B, C) and 

U (B, C) V (B, C) in terms of B, C, a, b and c. Set 

U(B, C)+ V(B, C)= g 

and 

U (B, C) V(B, C) = h. 

Then U(B, C) and V(B, C) are roots of the quadratic polynomial 

x1
- gx + h. 

Applying the quadratic roots formula, we can solve for U (B, C) 

and V (B, C). 

The next crucial step lies in the realization that by choosing 

B 2n . . 2n h ·1 
1 = co = cos - + 1 sm - , w ere 1 = - , 

3 3 

and 

U (B, C) and V (B, C) become cubic powers: 

3 
U (B, C) = (e

1 
+ Be

1 
+ Ce

3
) 

3 
V(B, C)= (e

1 
+ Ce

1 
+ Be

3
) • 

Consequently, (e, + Be
1 

+ Ce
3

) and (e, + Ce
1 

+ Be) can be 

determined. 

The roots of f(x) = x3 - ax 2 + bx- c 

Direct calculation shows that 

g = U + V = U(co, co2
) + V(co, co

2
) = 2i - 9ab + 27c 

and 

..WMathematical 

..... EDLEY Septemberl996 

···Cubic E Q U AT I 0 N S 

So that 

and 

2 3 
V = (e, + co e

1 
+ coe

3
) 

are the roots of the quadratic polynomial 

x1
- (2i- 9ab + 27c)x+ (i- 3b( 

Note that this quadratic polynomial is determined uniquely by 

the given cubic polynomial f(x) = x3 
- ax1 + bx - c. We may 

now apply the quadratic root formula to determine the values 

(e
1 
+ coe

1 
+ co1e) and (e, + co2e

1 
+ coeJ As a consequence, we 

obtain the following system of linear equations: 

where 

g = 2i- 9ab + 27c 

and 

Moreover 

co 

It is now clear that the cubic equation 

f(x) = 0 

is solved. 

Remark One may start directly from the system of linear equations 

{ 

e, + e1 + e3 = a 

e, + co~1 + co
2

e3 : A3 

e, + co e
1 

+ coe3 - A6 

to shorten the lengthy discussion we presented in this article. 

Then all one has to do is to determine the values A
3 

and A6. M' 
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