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9. Distribution of Identical Objects into Distinct Boxes 

In Section 7 of [3], we have discussed the problem of 

distributing identical objects into distinct boxes. Let us consider 

this problem again. 

Figure 9.1 shows 7 distinct boxes into which 5 identical objects 

are to be distributed. 

(1) (2) (3) (4) (5) (6) (7) 

Figure 9.1 

Question 1 

Suppose that each box can hold at most one object. In how 

many ways can this be done ? 

As shown in Figure 9.2, we first select 5 boxes from the 

seven, and then put an object in each of the 5 selected boxes. 

There are ( ~) ways for the first step, and 1 way for the 

second. Thus the answer is (~). 

•I I• •I •1•1 
(1) (2) (3) (4) (5) (6) (7) 

Fig 9.2 

Question 2 

Suppose that each box can hold any number of objects. In 

how many ways can this be done? 

Questions of this sort were studied in Section 7. Applying the 

method of counting certain binary sequences and bijection 

principle (BP), we obtain the answer to question 2 which is 

. b (5+7-1). (11) g1ven y 5 , 1.e. 
5 

. 

Question 3 

Suppose now that there are 11 identical objects (instead of 5) 

to be put into 7 distinct boxes. In how many ways can this 

be done if each box must hold at least one object? 

To fulfil the requirement that no box is empty, we first put one 

object in each box. We are now left with 4 objects, but are 

free to put them in any box. Again, by what we learned in 

S . 7 h . . b (4 + 7 -1) . ( 10) ect1on , t e answer IS g1ven y 
4 

, 1.e., 
4 

. 

Let us summarize what we discussed above by stating the 

following general results 

Suppose that there are r identical objects to be distributed 

into n distinct boxes. 

(I) If each box can hold at most one object, (thus 

r :s; n), the number of ways of distribution is given 

by (~). 

(II) If each box can hold any number of objects, the 

number of ways of distribution is given by ( r + ~- 1 ). 

(Ill) If each box must hold at least one object (thus r:? n), 

the number of ways of distribution is given by 

( 
(r - n) + n - 1 ) . ( r - 1 ) 

r - n ' 1.e., r - n · 

Example 9.1 

Eight letters are to be selected from the five English vowels a, 
e, i, o, u with repetition allowed. In how many ways can this 

be done if 

(i) there are no other restrictions ? 

(ii) each vowel must be selected at least once? 

(i) Some examples of ways of selection are give below: 

(1) a, a, u, u, u, u, u, u; 
(2) e, i, i, o, o, o, u, u; 
(3) a, e, i, i, o, o, u, u. 

As shown in Figure 9.3, these selections can be treated as 

ways of distributing 8 identical objects into 5 distinct boxes. 

( 1 ) <------4 • • ••• • •• 
(2) <------4 • • • • • • • • 
(3) <------4 • • • • • • • • 

a e 0 u 

Figure 9.3 

Thus, by (BP) and result (II) above, the number of ways of 

I . . . b (8 + 5 - 1) . ( 12) se ect1on IS g1ven y 
8 

, 1.e, 
4 

. 

(ii) As shown in the last box of Figure 9.3 , a way of selection 

which includes each vowel can be treated as a way of 

distribution such that no box is empty. Thus, by (BP) and 

result (Ill) above, the number of ways of selection is given 

by 

( 
(8 - 5) + 5 - 1) . ( 7) 

8 - 5 ' I.e, 3 . 

Example 9.2 

Consider the following two 13-digit binary sequences: 

1 1 1 0 1 0 1 1 1 0 0 0 0, 

1 0 0 0 1 1 0 0 1 1 1 1 0. 
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For binary sequences, any block of 2 adjacent digits is of the 

form : 00, 01 , 10, 11. In each of the above sequences, there 

are three 00, two 01 , three 10 and four 11 . Find the number 

of 13-digit binary sequences which have exactly three 00, 

two 01 , three 10 and four 11. 

To have exactly three 10 and two 01 in a sequence, such a 

sequence must begin with '1 ', end with '0', and have the 

changeovers of '1' and '0' as shown below, where each of the 

boxes (1), (3) and (5) [resp. , (2), (4) and (6)] holds only '1' 

(resp. , '0') and at least one '1' (resp ., '0'). 

0 0 0 

(1) [1 0] (2) [01] (3) [1 0] (4) [01] (5) [1 0] (6) 

For instance, the two sequences given in the problem are of 

the form : 

111 0 0 111 0000 

000 11 00 1111 0 

To have three 00 and four 11 in such a sequence, we must 

(i) put three more '0' in boxes (2), (4) or (6) arbitrarily and 

(ii) put four more '1 ' in boxes (1 ), (3) or (5) arbitrarily. (Check 

that there are 13 digits altogether.) The number of ways to do (i) 

. (3 + 3 -1) . (5) h"l h f ("" ) . (4 + 3- 1) IS 
3 

, 1.e., 
2 

w 1 e t at o 11 IS 
4 

, 

i.e., (~)- Thus, by (MP), the number of such sequences 

is(;)(~) , i.e., 150. 

The following problem is taken from the American Invitational 

Mathematics Examination Paper (1986) : 

Problem 9.1 

In a sequence of coin tosses one can keep a record of the 

number of instances when a tail is immediately followed by 

a head, a head is immediately followed by a head, etc.. We 

denote these by TH, HH, etc.. For example, in the sequence 

HHTTHHHHTHHTTTT of 15 coin tosses we observe that 

there are five HH, three HT, two TH and four TT subsequences. 

How many different sequences of 15 coin tosses will contain 

exactly two HH, three HT, four TH and five TT subsequences? 

Problem 9.2 

Consider the following two 15-digit ternary sequences (formed 

by 0, 1 and 2) : 

0 0 0 1 1 1 2 2 0 0 1 1 2 2 2 

0 1 2 2 2 0 0 0 0 1 1 1 1 2 2 

Observe that each of the sequences contains exactly three 00, 

three 11 , three 22, two 01 , two 12 and one 20. Find the 

number of such ternary sequences . 
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Problem 9.3 

Find the number of ways of distributing 10 identical tables 

into 5 distinct rooms in each of the following cases. 

(i) Room 1 holds at most 2 tables. 

(ii) Each of room 1 and room 2 holds at most 1 table. 

Problem 9.4 

Show that the number of ways of distributing r identical objects 

into n distinct boxes such that box 1 can hold at most one 

object is given by 

10. Distribution of Distinct Objects into Distinct Boxes 

As can be seen from the various examples given in Sections 

7 and 9, the distribution problem, which deals with the 

counting of ways of distributing objects into boxes, is a basic 

model for many counting problems. In distribution problem, 

objects can be identical or distinct, and boxes too can be 

identical or distinct. Thus there are four cases to be considered; 

namely 

Objects Boxes 

(1) identical distinct 

(2) distinct distinct 

(3) distinct identical 

(4) identical identical 

We have considered case (1) in Sections 7 and 9. Cases (3) 

and (4) will be discussed in due course. In this section, we 

shall consider Case(2). Before we proceed, we would like to 

point out that the ordering of the distinct objects in each box 

is not taken into consideration in the discussion in this section. 

Suppose that 5 distinct balls are to be put into 7 distinct 

boxes. 

Question 1 In how many ways can this be done if each box 

can hold at most one ball? 

Question 2 In how many ways can this be done if each box 

can hold any number of balls? 

We first consider Question 1. As shown in Figure 10.1, let a, 

b, c, d and e denote the 5 distinct balls. First, we put 'a' (say) 

a, b, c, d, e 

/ 

(1) (2) (3) (4) (5) (6) (7) 

Figure 10.1 



into one of the boxes. There are 7 choices. Next, we consider 

'b' (say). As each box can hold at most one ball, and one of 

the boxes is occupied by 'a', there are now 6 choices for 'b'. 
Likewise, there are, respectively, 5, 4 and 3 choices for 'c', 'd' 
and 'e'. Thus, by (MP), the number of ways of distribution is 

given by 7 · 6 · 5 · 4 · 3. 

Note that the above answer can be expressed as P~ , which 

as defined in Section 4 of [2], is the number of ways of 

arranging any 5 objects from the 7 distinct objects. The fact 

that the above answer is P~ does not surprise us as there is a 

1-1 correspondence between the distributions of 5 distinct 

balls into 7 distinct boxes and the arrangements of 5 distinct 

objects from 7 distinct objects as shown in Figure 1 0.2. (Find 

out the rule of the correspondence!) 

{a, b, c, d, el 11, 2, 3, 4, 5, 6, n 

.._.. 41275 

.._.. 74321 

(1) (2) (3) (4) (5) (6) (7) 

Figure 10.2 

In general, we have : 

The number of ways of distributing r distinct objects 

.into n distinct boxes such that each box can hold at 

most one object (and thus r :5: n) is given by 

p; (= _n!_). 
(n - r)! 

We now consider Question 2. There are 7 ways of putting 'a' 

in the boxes. As each box can hold any number of balls, there 

are also 7 choices for each of the remaining balls b, c, d, and 

e. Thus, by (MP), the answer is 75
• 

In general, we have : 

The number of ways of distributing r distinct objects 

into n distinct boxes such that each box can hold any 

number of objects is given by n'. 

Problem 1 0.1 

Find the number of ways for a teacher to distribute 6 different 

books to 9 students if 

(i) there is no restriction; 

(ii) no student gets more than one book. 

Problem 1 0.2 

Let A be the set of ways of distributing 3 distinct objects into 

4 distinct boxes 1, 2, 3 and 4 with no restriction, and let 8 
be the set of 3-digit numbers using 1, 2, 3, 4 as digits with 

repetition allowed (e.g., 222, 441 , 431 , ... ). Establish a 1-1 

correspondence between A and B. 

Problem 1 0.3 

Suppose that m distinct objects are to be distributed into n 
distinct boxes so that each box contains at least one object 

(thus m :2: n). In how many ways can this be done if 

(i) m = n? (ii ) m = n + 1? (iii) m = n + 2? 

Problem 1 0.4 

Find the number of ways of distributing 8 distinct objects into 

3 distinct boxes if each box must hold at least 2 objects . 

11. Other Variations 

Two cases of distribution problem were discussed in the 

preceding sections. In this section, we shall study some of 

their variations. 

When identical objects are put in distinct boxes, whether the 

objects in each box are ordered or not makes no difference. 

The situation is no longer the same if the objects are distinct 

as shown in Figure 11.1 

de a b c ed c b a 

(1) (2) (3) (1) (2) (3) 

Figure 11.1 

In Section 10, we did not consider the ordering of objects in 

each box. In our next example, we shall take it into account. 

Example 11.1 

Suppose that 5 distinct objects a, b, c, d, e are distributed into 

3 distinct boxes, and that the ordering of objects in each box 

counts. In how many ways can this be done ? 

First, consider 'a' (say), clearly, there are 3 choices of a box 

for 'a' to be put in (say, 'a' is put in box 2). Next, consider 

'b'. 'b' can be put in one of the 3 boxes. The situation is 

different if 'b' is put in box 2 due to the existence of 'a' in 

that box. As the ordering of objects in each box counts, if 'b' 

is put in box 2, then there are two choices for 'b', namely, 

M
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® 
/ 1\~ 

I a I 
(1) (2) (3) 

Figure 11.2 

left of 'a' or right of 'a' as indicated in Figure 11.2. Thus, 

altogether, there are 4 choices for 'b', (say, 'b' is put in box 3). 

0 
~j\ 

I a I b 

(1) (2) (3) 

Figure 11.3 

Now, consider 'c'. As shown in Figure 11.3, 'c' has 5 choices. 

Continuing in this manner, we see that 'd' and 'e' have, 

respectively, 6 and 7 choices. Thus the answer is given by 

3·4·5·6·7. 

Let us try a different approach to solve the above problem. 

First, we pretend that the objects a, b, c, d and e are all 

identical. The number of ways of distributing 5 identical objects 

into 3 distinct boxes is, by result (II) in Section 9, (
5 

+ ~- 1 
), 

i.e., (~). Next, take such a way of distribution, 

say 0 0 0 0 0 

(1) (2) (3) 

Since the 5 objects are actually distinct and the ordering of 

objects in each box counts, such a distribution for identical 
objects corresponds to 5! different distributions for distinct 

objects. Thus, by (MP), the answer is given by {i) ·5!, which 

agrees with the first answer 3 · 4 · 5 · 6 · 7. 

In general, we have: 

The number of ways of distributing r distinct objects 

into n distinct boxes such that the ordering of objects 

in each box counts is given by 

( 
r + n - 1) . 1 r r. 

which is equal to 

n (n + 1 )(n + 2) ... ( n + r - 1 ). 

Problem 11.1 

Ten students are to line up in a 4-line queue as shown below. 

In how many ways can this be done? 

..r..MathemaHcal 
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A-B----

2 - } -H-D --

3 - J - C---

4 -E-C- F--

Problem 11.2 

Solve Problem 10.3 under an additional condition that the 

ordering of objects in each box counts. 

In our previous discussion on distribution problem, objects 

are either all identical or all distinct. We now consider a case 

that is a mixture of these two. 

Example 11.2 

Four identical objects 'a', three identical objects 'b' and two 

identical objects 'c' are to be distributed into 9 distinct boxes 

so that each box contains one object. In how many ways can 

this be done? 

First, consider 4 a's (say). Among the 9 boxes, we choose 

4 of them, and put one 'a' in each box chosen. Next, consider 

3 b's (say). Among the 5 boxes that remain, we choose 3, and 

put one 'b' in each box chosen (see Figure11.4). Finally, we 

put a 'c' in each of the 2 remaining boxes. 

(1) (2) (3) (4) (5) (6) (7) (8) (9) 

Figure 11 .4 

There are ( ~) ways for step 1, ( ~) ways for step 2 and ( ~) 

(= 1) way for step 3. Thus, by (MP), the answer is given by 

(~) ( ~) ·1 = _2l__ . __2_ = _ 9!_ 
4!5! 3!2! 4!3!2! 

Remark 

In the above, 'a' is considered first, followed by 'b' and 'c'. 

The answer is independent of the order. For instance, if 'b' is 

considered first, followed by 'c' and 'a', by applying a similar 

argument, we arrive at C)(~)(:), which is again _1L_ 
4! 3! 2!. 

There is a 1-1 correspondence between the distributions 

considered in Example 11.2 and the arrangements of 4a's, 

3b's and 2c's in a row as shown in Figure 11 .5. 



lclblalalblalalblcl ~cbaabaabc 

Figure 11.5 

Thus, by the result of Example 11.2, the number of 

arrangements of 4 a's, 3b's and 2c's in a row is given by 

9! 
4! 3! 2! . 

In general, we have: 

Suppose that there are n
1 

identical objects of type 1, 

n
2 

identical objects of type 2, . .. , nk identical objects 

of type k. Let n = n1 + n
2 

+ ... + nk. Then the number 

of arrangements of these n objects in a row is given 

by 

which is equal to 

n! 

Problem 11.3 

Show that 

n! 

Let us re-consider Example 11 .1 . We observe that there is a 

1-1 correspondence between the distributions considered in 

Example 11 .1 and the arrangements of a, b, c, d, e and ·2 1 's 

as shown in Figure 11.6. By the above result, the number of 

be a de <----> be I a I de 

cde ba <----> cde I I ba 

(1) (2) (3) 

Figure 11.6 

arrangements of a, b, c, d, e and 2 1 's is given by Zl, which 

agrees also with the first two answers. 
2! 

Problem 11.4 

Find the number of arrangements of 3 x's, 4 y's and 5 z's in 

a row if 

(i) there is no restriction; 

(ii) no two y's are adjacent; 

(iii) any two x's are separated by at least 2 other letters. 

Let A = {1 , 2, ... , m) and B = {1 , 2, ... , n), where m, n ~ 1. 

A mapping f from A to B, denoted by f: A --7 B, is a rule which 

assigns to each element a of A a unique element f (a) of B. 

For instance, given A = {1 , 2, 3) and B = {1 , 2, 3, 4), the 

following rules g , h defined, respectively, by 

{ 

g (1) = 2 

g (2) = 4 

g (3) = 2 

{ 

h(1 ) = 3 

h (2) = 4 

h(3) = 1 

A 

A 

B 

B 

are mappings from A to B. A mapping f: A --7 B is injective 
(i.e., 1-1 ) if f(i ) * f(j ) in B whenever i * j in A. Thus the 

mapping h defined above is 1-1 while g is not (why?). 

A mapping f : A --7 B can actually be regarded as a way of 

distributing m distinct objects 1, 2, .. . m into n distinct boxes 

1, 2, ... , n (ordering of objects in each box does not count) 

in the following manner : f(i ) = j means that object ' i ' is put 

in box 'j '. Thus, the mappings g and h defined above can be 

treated as the ways of distribution shown below : 

g: 

(1) 

h: 

(1) 

Problem 11.5 

CD 
CD 1 
(2) (3) 

CD 
(2) (3) 

(4) 

(4) 

Let A = (1, 2, .... , m) and B = {1 ,2, . .. . , n), where m, n ~ 1. 

Find 

(i) the number of mappings from A to B; 

(ii) the number of 1-1 mappings from A to B (here, m ~ n); 

(iii) the number of mappings f : A --7 B such that f (i) < f(j ) in 

B whenever i < j in A (here, m :o; n); 

(iv) the number of mappings f: A --7 B such that f (1) = 1. 

A mapping f : A --7 B is surjective (i.e., onto) if for each b E B, 
there exists a E A such that f (a) = b. The mappings g and h 
from {1, 2, 3) to (1 , 2, 3, 4) defined above are not surjective. 

Indeed, iff: {1 , 2, ... , m) --7 {1 , 2, ... , n) is an onto 

mapping, then m ~ n (why?). Consider the following two 

mappings g and h from {1 , 2, 3, 4) to {1 , 2, 3) : 

g 

It can be checked that g is onto while h is not so. 
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EDcEY ~ 



Problem 11.6 

Let A= {1 1 21 ••• 1 m) and 8 = {1 1 21 ••• 1 n}. Find the number Problem 11.4 

of onto mappings from A to 8 in each of the following cases: 

(i) m = n; 

(ii) m = n + 1; 

(iii) m = n + 2. 

(Compare this problem with Problem 1 0.3 .) M' 

Answers 

Problem 9.1 

560 

Problem 9.2 

64 

Problem 9.3 

(i) CD + CD + en 
(ii) (1n + 2(1n + (1~) 

Problem 1 0.1 

(i) 9
6 

(ii) 2l 
3! 

Problem 1 0.2 

The i'h digit is 1j 1 when and only when object 1 i 1 is put in box 
ljl. 

Problem 1 0.3 

(i) n! 

(ii) (n; 1 )-n! 

(iii)( n ; 2 )(; ) · n! + ( n ; 2). n! 

Problem 1 0.4 

[(~)(i) + (~)(~)]-3! 

Problem 11.1 

13! 
3! 

Problem 11.2 

(i) n! 

(ii) (n; 1 ) -n! -2! 

(iii) (n; 2 )(; )-n!-2!-2! + (n; 2 )-n! -3! 

n:11 Mathematical 
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12! (i) 
3!4!5! 

(ii) (~) 8! 
3!5! 

(iii) ( ~) _2_L 
4!5! 

Problem 11.5 

(i) nm 

(ii) n! 
(n- m)! 

(iii) ( ;) 

(iii) nm - l 

Problem 11.6 

(~)(~) 

(~)(~) 

same as Problem 1 0.3 
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