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6. Bijection Principle 

In Sections 2 and 3 of [1 L we introduced two basic principles 

of counting, namely, the Addition Principle (AP) and the 

Multiplication Principle (MP). In this section we shall introduce 

another basic principle of counting, known as the Bijection 

Principle. With the help of the counting techniques introduced 

in (1] and [2], we shall learn some applications of the Bijection 

Principle in the present article. 

Suppose that there are 120 parking spaces in a building, and a 

number of cars are parked within the building. Assume that 

each car occupies a space, and each space is occupied by a car 

(see Figure 6.1 ). Then we know that the number of cars in the 

building is 120 without having to count the cars one by one. 

The number of cars and the number of spaces are the same 

Figure 6.1 

because there is a 1 - 1 correspondence between the set of cars 

and the set of spaces in the building. This is a simple illustration 

of the Bijection Principle that we are going to state. 

Let A and 8 be two finite sets. A bijection from A to 8 is a rule 

which assigns to each element of A a unique element of 8 and 

at the same time for each element of 8 there is a unique elemef1t 

of A which is assigned to it according to this rule. Thus if we 

can construct a bijection from A to 8, the elements of A and 8 
will be paired off, so that A and 8 have the same number of 

elements. This is stated formally as follows: 

The Bijection Principle (BP). Let A and 8 be two finite 

sets. If there is a bijection from A to 8, then IAI = I 81. 

In Example 5.5 in [2], we counted the number of chords and the 

number of points of intersection of the chords joining some 

fixed points on the circumference of a circle. Let us study the 

problem again. Figure 6.2 shows five distinct points on the 

circumference of a circle. 

5 

2 

3 

Figure 6.2 

How many chords are there formed by these points? Let A be 

the set of such chords, and 8 the set of 2-element subsets of 

!1, 2, 3, 4, 5). It is easy to see that the rule which assigns to 

each chord x in A the 2-element subset ( a, f3 l, where a, f3 are 
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the two points which determine the chord x, is a bijection 

between A and B. Figure 6.3 shows the bijection. Thus by (BP), 

IAI = 181. We have 181 = C). Hence IAI = ( J 
1 5 

{1, 2} 

2 
{3, 5} 

{3, 4} 

3 
Figure 6.3 

Next, how many points of intersection of these ( ~) chords are 

there within the circle if no three of the chords are concurrent 

within the circle? Let A be the set of such points of intersection, 

and 8 the set of 4-element subsets of (1, 2, 3, 4, 5). Figure 6.4 

exhibits a bijection between A and 8 (figure out the rule which 

defines the bijection!). Thus by (BP), IAI = 181. Since 181 =C) 
by definition, we have IAI = C). 

5 

a !1, 2, 3, 5) 

b (1, 2, 4, 5) 
2 c (1, 2, 3, 41 

d (2, 3, 4, 51 

e (1, 3, 4, 51 

3 

Figure 6.4 

Let us proceed to see some more applications of (BP). The type 

of problems discussed in our next example can always be found 

in mathematics competitions. 

Example 6.1 
Figure 6.5 shows a 2 x 4 rectangular grid with two specified 

corners P and Q. There are 12 horizontal segments and 1 0 

vertical segments in the grid. A shortest P - Q route is a 

continuous path from P to Q consisting of 4 horizontal segments 

and 2 vertical segments. An example is shown in Figure 6.5. 

How many shortest P - Q routes are there in the grid? 

.----.----~~~~_.~Q 

p 

Figure 6.5 

Certainly we can solve the problem directly by listing all the 

possible shortest routes. This, however, would not be practical if 

we wish to solve the same problem in, say, a 190 x 1 00 

rectangular grid. We look for a more efficient way. 

There are two types of segments: horizontal and vertical. Let us 

use a '0' to represent a horizontal segment, and a '1' to represent 

a vertical segment. Thus the shortest P - Q route shown in 



Figure 6.5 can accordingly be represented by the following binary 

sequence Q 

---o1o1oo 

Q 
p 

Likewise, 

p--------+-+-----4t--____._ .... ---ooo1o1 

and so on. Let A be the set of all shortest P- Q routes, and B 
the set of 6-digit binary sequences with two 1's. Then one sees 

that the above way of representing a shortest P - Q route by a 

binary sequence in B establishes a bijection between the sets A 
and B. Thus by (BP), IAI = I Bl. The counting of I Bl is easy. 

Indeed, IBI =(~)(see Exampl~ 5.4 in [2]). Thus IAI = (~). 

Let us continue to discuss another typical counting problem. 

Example 6.2 

For a set 5, let P(5) denote the set of all subsets of 5, inclusive 

of 5 and the empty set 0. Thus, for lNn = 11, 2, ... , n L 1 :s; n :s; 3, 

we have 

P(lN
1

) = !0, lllL 

P(lN
2

) = !0, 11 L l2L 11, 21 I, 
P(lN3) = !0, l1L (2l, l3L 11,21, l1,3l, 12,31, 11,2,31}. 

Note that IP(lN
1
)1 = 2, IP(lN

2
)1 = 4, IP(lN

3
)1 = 8. Table 1 in 

Section 4 of [2] shows that I P(lN
4

)1 = 16. What is the value of 

IP(lN
5
)1? 

For convenience, let A = P(lNJ Thus A is the set of all subsets 

of 11, 2, 3, 4, Sl. Represent these subsets by 5-digit binary 

sequences as follows: 

0 

{ll 
l2l 

lSI 
11 ,2l 

{4,51 

11,3,51 

11,2,3,4,51 

00000 

10000 

01000 

00001 

11000 

00011 

10101 

11111 

The rule is that the ith digit of the corresponding binary sequence 

is '1' if 'i' is in the subset; and '0' otherwise. Let B be the set 

of all 5-digit binary sequences. Clearly, the above rule establishes 

a bijection between A and B. Thus by (BP), IAI = I Bl. Since 

IBI = i (see Example 3.1 in [1]), IAI = l. 

Note that IP(lN
1

)1 = 2 = 2
1
, IP(lN

2
)1 = 4 = i, IP(lN) I = 8 = i, 

IP(lN4)1 = 16 = l, and now IP(lN
5

)1 = i. What is IP(lN)I for 

n 2: 1 ? See Problem 6.1. 

The above examples show that (BP) is indeed a very powerful 

method of enumeration. In the course of applying (BP), we replace 

the less familiar set A by a more familiar set B, and transform the 

more difficult problem of counting IAI to the easier problem 

(hopefully) of counting I Bl. Although the members of A and B 
could be very much different in nature, as long as there is a 

bijection between A and B, we have IAI = IBI. 

Problem 6.1 
For each positive integer n, show that IP(lN)I = 2n by establishing 

a bijection between P(lN) and the set of n-digit binary sequences. 

Problem 6.2 

Let n and k be integers with 1 :s; k :s; n. Prove that ( :) = ( nn- k) 
by establishing a bijection between the set of k-element subsets 

of lN n and the set of (n - k)- element subsets of lN n· 

Problem 6.3 
Figure 6.6 shows 8 distinct points on the circumference of a 

circle. Assume that no three of the chords formed by these points 

are concurrent within the circle. Find the number of triangles 

whose vertices are chosen from the 8 given points or the points 

of intersection of the chords within the circle. 

2 

Problem 6.4 

8 

4 

Figure 6.6 

7 

Find the number of parallelograms contained in the configuration 

of Figure 6.7 which have no sides parallel to BC. 

A 

Figure 6.7 

Problem 6.5 
The number '4' can be expressed as a sum of one or more 

positive integers, taking order into account, in 8( =23) ways: 

4 = 4 = 1 + 3 = 3 + 1 = 2 + 2 = 1 + 1 + 2 = 1 + 2 + 1 

= 2 + 1 + 1 = 1 + 1 + 1 + 1. 

MathematicaiiD 
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Let 'n' be a given natural number. Show, by establ ishing a 

bijection between the set of such expressions for n and the set 

of (n - 1 )-digit binary sequences, that 'n' can be so expressed in 
n · I 

2 ways . 

Problem 6.6 
Find the number of shortest P - Q routes in the following 

rectangular grid 

p 

A 

8 

Q 

if (i) the routes must pass through the point A; 
(ii) the routes must pass through both points A and B. 

7. Distribution of Balls into Boxes 

Figure 7.1 shows three distinct boxes into which seven identical 

balls are to be distributed. Three different ways of distribution 

are shown in Figure 7.2. (Note that the two vertica l bars at the 

two ends are removed.) 

In how many different ways can this be done? This is an example 

of the type of problems that we sha ll discuss in this section. We 

shall see how problems of this type can be so lved by app lying 

(BP). 

In Figure 7.2, if we treat each vert ica l bar as a '1' and each ball 

as a '0', then each way of distribution becomes a 9-digit binary 

sequence with two 1's. For instance, 

(a) -- 0 0 0 0 1 0 0 1 0 

(b) -- 0 0 1 0 0 1 0 0 0 

(c) -- 0 1 1 0 0 0 0 0 0 

Obviously, this correspondence establishes a bijection between 

the set of ways of distributing the balls and the set of 9-dig it 

binary sequences with two 1's. Thus by (BP), the number of 

ways of distributing the seven identical balls into three distinct 

boxes is C). 
Problem 7.1 
Show that the number of ways of distributing r identical balls 

into n distinct boxes is given by 

In the distribution problem discussed above, some boxes are 

allowed to be vacant. Suppose no box is allowed to be vacant; 

how many ways are there to distribute the seven identica l balls 

into three distinct boxes? 

To meet the requirement that no box is vacant, we first put a ball 

in each box and this is counted one way as the balls are identical. 

lfl Mothemoticot 
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(a) 

(b) 

(c) 

(1) 

~ 
/ l_o__O__Oj 

I I 
(2) (3) 

Figure 7.1 

o o o ol 00 0 

00 00 looo 

0 loooooo 
Figure 7.2 

We are then left with 4 (= 7 - 3) balls, but we are now free to 

distribute these 4 balls into any box. By the result of Problem 

(
4+3-1) (6) 7.1, the number of ways this can be done is 3 _ 1 = 

2 
. 

Thus the number of ways to distribute 7 identica l ba ll s into 3 

distinct boxes so that no box is empty is C). 
Example 7.1 
There are 4 gir ls and 5 boys in a class, which include 2 particular 

boys A and 8, and a particular girl C. Find the number of ways 

to arrange all of the boys and girl s in a row so that no two of 

A, 8 and C are adjacent. 

This problem was stated in Problem 5.1 (ix) in [2]. There are 

different ways to solve the problem. We sha ll see in what follows 

that it can be treated as a distribution problem. 

First of all , there are 3! ways to arrange A, 8 and C. Fix one of 

the ways, say A - 8 - C. We then cons ider the remaining six 

ch ildren. Let us imagine tentatively that these 6 ch ildren are 

identical, and they are to be placed in 4 distinct boxes as shown 

in Figure 7.3 so that boxes (2) and (3) are not vacant (since no 

two of A, 8 and C are adjacent). To meet this requirement, we 

place one in box (2) and one in box (3). Then the remain ing four 

( 4+4-1) (7) can be placed free ly in the boxes in 4 _ 1 = 
3 

ways. 

(F igure 7.4 shows a way of distribution.) But the six chi ldren are 

A 
0 

(1) (2) 

/ 
8 

~ 
~ 

0 
G 

(3) (4) 

Figure 7.3 



actually distinct. Thus, to each of the G) ways as shown in 

Figure 7.4, there are 6! ways to arrange them. 

Hence by (MP) (see[1 ]), the required number of ways is 3! G) 6!, 

which is 6!7·6·5. 

0 A 

(1) 

Remark 

00 8 0 

(2) (3) 

Figure 7.4 

c _QQ_ 

(4) 

The answer 6!7·6·5 suggests that the problem can be solved in 

the following way. We first arrange the six children (excluding A, 

8 and C) in a row in 6! ways. Fix one of these ways, say 

__ x, __ X
2 
__ X

3 
__ X

4 
__ \ __ X

6 
__ 

(1) (2) (3) (4) (5) (6) (7) 

We now consider A. There are 7 ways to place A in one of the 

7 boxes, say box (3): 

__ x, __ X
2 
~ X

3 
__ \ __ \ __ X

6 
__ 

(1) (2) (3) (4) (5) (6) (7) 

Next, consider B. Since A and 8 cannot be adjacent, 8 can be 

placed only in one of the remaining 6 boxes. Likewise, C can 

be placed only in one of the remaining 5-boxes. The answer is 

thus 6!7·6·5. 

Problem 7.2 

Show that the number of ways to distribute r identical balls into 

n distinct boxes, where r :::> n, so that no box is vacant, is given 

by 

Problem 7.3 

There is a group of 10 students which includes 3 particular 

students A, 8 and C. Find the number of ways of arranging the 

10 students in a row so that 8 is always between A and C (A and 

8, or 8 and C need not be adjacent). 

Problem 7.4 

Five distinct symbols are transmitted through a communication 

channel. A total of 18 blanks are to be inserted between the 

symbols with at least two blanks between every pair of symbols. 

In how many ways can the blanks be arranged? 

8. More Applications of (BP) 

We shall give additional examples in this section to show more 

applications of (BP). 

Example 8.1 
Consider the following linear equation: 

(1) 

If we put x
1 

= 4, x
2 

= 1 and x
3 

= 2, we see that (1) holds. Since 

4, 1, 2 are nonnegative integers, we say that (x
1
, x

2
, x

3
) = (4, 1, 2) 

is a nonnegative integer solution to the linear equation (1 ). Note 

that (x1, x
2

, x
3

) = (1, 2, 4) is also a nonnegative integer solution 

to (1 ), and so are (1, 2, 4) and (4, 1, 2). Other nonnegative 

integer solutions to (1) include 

(0, 0, 7), (0, 7, 0), (1' 6, 0), (5, 1' 1 ), ... 

How many nonnegative integer solutions to (1) are there? 

Let us create 3 distinct 'boxes' to represent x,, x
2 

and x
3 

respectively. Then each nonnegative integer solution (x
1
, x

2
, x) 

= (a, b, c) to (1) corresponds, in a natural way, to a way of 

distributing 7 identical balls into boxes so that there are a, band 

c balls in boxes (1), (2) and (3) respectively (see Figure 8.1). This 

correspondence clearly establishes a bijection between the set of 

nonnegative integer solutions to (1) and the set of ways of 

distributing 7 identical balls in 3 distinct boxes. Thus by (BP) 

and the result of Problem 7.1, the number of nonnegative integer 

(
7 + 3 - 1 ( 9 ) 

solutions to (1) is 
3 

_ 
1 

) = 
2 

. 

(4, 1, 2) -- o o o o I o I o o 
(1) (2) (3) 

(2, 5, 0) -- o o I o o o o o I 
(1) (2) (3) 

Figure 8.1 

Problem 8.1 
Consider the linear equation 

x, + x2 + ... + xn = r (2) 

where r is a nonnegative integer. Show that 

(i) the number of nonnegative integer solutions to (2) is given by 

( r + ~- 1 ); 

(ii)the number of positive integer solutions (x
1
, x

2
, .•• ,x), 

r- 1 
with each x. :::> 1, is given by (,. n ), where r :::> n. 

' 

Example 8.2 

Recall that the number of 3-element subsets !a, b, cl of the set 
. (10) . IN

10 
= !1, 2, ... , 1 Ol IS 3 . Suppose now we 1m pose the 

additional condition that 

b - a :::> 2 and c - b :::> 2 (3) 

(i.e. no two numbers in !a, b, d are consecutive). For instance, 

!1, 3, 8l and !4, 6, 101 satisfy (3) but not !4, 6, 7l and !1, 2, 91. 
How many such 3-element subsets of IN

10 
are there? 

Let us represent a 3-element subset !a, b, d of IN
10 

satisfying (3) 

by a binary sequence as follows: 

!1, 3, 8l 

!3, 6, 1 Ol 

(1) (2) (3) (4) (5) (6) (7) (8) (9) (1 0) 

1010000100 

001001000 

Note that the rule is similar to the one introduced in Example 6.2. 

Clearly, this correspondence is a bijection between the set A of 

3-element subsets of IN
10 

satisfying (3) and the set 8 of 1 0-digit 

binary sequences with three 1 's in which no two 1 's are adjacent. 

Thus IAI = I 81. How to count I 81? Using the method discussed 

Mathematicai iiJ 
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in distribution problems, we obtain 

Thus IAI = ( ~ ) . 

Example 8.3 
Two tennis teams A and 8, consisting of 5 players each, will 

have a friendly match playing only single tennis with no ties 

allowed. The players in each team are arranged in order : 

A: a
1

, a
2

, ay a
4

, a
5 

8: b1, b
2
, by b4, b

5 

The match is run in the following way. First, a
1 

plays against b1• 

Suppose a
1 

wins (and so b
1 

is eliminated). Then a
1 

continues to 

play against b
2

. If a
1 

wins again, then a
1 

keeps on to play against 

b
3

; if a
1 

is beaten by b
2 

(and so a
1 

is eliminated), then b
2 

continues 

to play against a
2

, and so on. What is the number of possible 

ways that the 5 players in team 8 can be eliminated? Two such 

ways are shown in Figure 8.2. 

(i) 

(ii) 

'a --b' means 'a beats b' 

Figure .8.2 

Let x; be the number of games won by the player a;, i = 1, 2, 

3, 4, 5. Thus, in Figure 8.2 (i), 

and in Figure 8.2 (ii), 

In order for the 5 players in team 8 to be eliminated, we must 

have 

and the number of ways this can happen is, by (BP), the number 

of nonnegative integer solutions to equation (4). Thus the desired 

5+5·1 (9) answer is ( 4 ) = 
4 

. 
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Problem 8.2 
Find the number of 4-element subsets Ia, b, c, d) of N

20 
satisfying 

the following condition 

b - a ~ 2, c - b ~ 3 and d - c ~ 4. 

Problem 8.3 
Find the number of nonnegative integer solutions to the linear 

equation 

Problem 8.4 
Find the number of triples (x

1
, x

2
, x

3
), where x

1
, x

2
, x

3 
are 

nonnegative integers, which satisfy the inequality 

X
1 

+ x
2 

+ x3 :o; 1996. 

Answers 

Problem 6.3 

( ~ ) + 4( : ) + 5( ~ ) + ( : ) 

Problem 6.4 

Problem 6.6 

(i) ( ~ )( ~ ) 

(ii) c ) ( : )( ~ ) 
Problem 7.3 

2c~ )7! 

Problem 7.4 

5!C;) 
Problem 8.2 

C) 
Problem 8.3 

C)+ C)+(:)+ C)+ 1 

Problem 8.4 

c9:9) 
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