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A function in the Paley-Wiener space of bandlimited functions can 
be reconstructed from certain regularly, or irregularly, sampled values of 
the function. This paper contains a study of three sampling theorem­
s, namely Shannon's classical sampling theorem, Benedetto and Heller's 
generalisation of it and Benedetto and Heller's irregular sampling theo­
rem. Experiments have been conducted to compare the performance of 
the three sampling theorems. For the realisation of the irregular sampling 
theorem, some examples of irregular sampling sequences that satisfy its 
hypothesis have been constructed. In addition, a scheme for estimating 
the frame bounds associated with these sequences, which are required for 
the implementation of the theorem, has been proposed. 

§1. Introduction 

Let L 2 (R) be the space of complex-valued square-integrable functions 
over the real line. The norm of a function fin L2 (R) is given by 

(j(X) ) 1/2 

llfll2 = -= If( t)l 2
dt , 

which is finite. Also, for any j,g E L2 (R), define an inner product ( , ) 
by 

(!,g)= i: f(t)g(t)dt. 
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Formally, we define the Fourier transform j of a function f to be 

]('y) =I: f(t)e-27rit'dt. 

The Fourier inversion formula is given by 

f(t) =I: ](l)e27rit, dr; 

and the convolution of two functions f and g over the real line is defined 
by 

(! * g)(t) =I: f(r)g(t- r)dr. 

For any n > 0, define the Paley- Wiener space PWn of finite energy, 
bandlimited functions to be 

PWn = {f E L2 (R) : suppj ~ [-n, !1]}. 

The leading example of a function in PWn is the sine function 

k(t) = sinc(21r!1t) = sin(21r!1t)/(21r!1t). (1) 

With respect to the sine function, it is known (see [1]) that PWn 1s a 
reproducing kernel Hilbert space, that is, 

PWn = {f E L2 (R): 2!1(! * k) = f}. 

Other examples of functions in PWn are functions of the form 

f(t) = [sinc(27rwt)]m, 

(2) 

(3) 

where m is a positive integer, and w :::; !1/m. (Note that if J is of the form 
(3), then supp j = [-wm, wm].) In addition, linear combinations, as well 
as translations along the real line, of such functions are also in PWn. 

In this paper, we shall study the reconstruction of any function in 
PWn, based on certain regularly, or irregularly, sampled values of the 
function. Two regular sampling theorems will be examined in Section 
2. A characterisation of functions in PWn with respect to their real and 
imaginary parts will also be obtained. In Section 3, we shall study an 
irregular sampling theorem, and construct sampling sequences that satisfy 
its hypothesis. Furthermore, a scheme for estimating the frame bounds 
associated with these seqences, which are required for the implementation 
of the theorem, will be proposed. Finally, in Section 4, we shall show the 
results of some numerical experiments which compare the performance of 
the above sampling theorems. 
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§2. Regular Sampling 

In this section, we shall reconstruct a given function in the Paley­
Wiener space PWn based on regular samples of the function, that is, 
sampled values are taken at a sequence of uniformly spaced points. Two 
regular sampling theorems, where the second is an extension of the first, 
will be examined. 

The first theorem which we shall consider is the classical sampling 
theorem. 

Theorem 1. (Shannon [3]) LetT, n > 0. Iff E PWn and 0 < 2Tf2 :::; 
1, then 

(X) 

f(t) = 2Tf2 L f(nT)sinc[2rrf2(t- nT)], (4) 
n=-= 

where the convergence is uniform on Rand in L 2 (R)-norm. 

Remarks. 
(1) The formula (4) expresses fin terms of its sampled values {f(nT): 

n E Z}, with {nT: n E Z} as the sampling sequence. Here, Tis the 
sampling period, and the reciprocal ofT gives the sampling frequency, 
or the sampling rate. 

(2) The sampling rate, 2!1, which occurs when 2Tf2 = 1, is known as the 
Nyquist rate. It is the minimum sampling rate required for perfect 
reconstruction of functions in PWn based on their sampled values. 
Below this rate, perfect reconstruction is generally impossible, due to 
the phenomenon called aliasing (see [1]). 

(3) It is known (see [1]) that if (4) holds for all f E PWn, then 2Tf2:::; 1. 

The second regular sampling theorem which we shall examine is 

Theorem 2. (Benedetto and Heller [2]) Let T, n > 0 with 0 < 
2Tf2 :::; 1. Suppose that s E PW1;(2r) satisfies the condition s = T on 
(-n, !1]. Then for every f E PWn' 

(X) 

f(t) = L f(nT)s(t- nT), (5) 
n=-= 

where the convergence is uniform on Rand in L2 (R)-norm. 
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Remarks. 
(1) The function s is known as the kernel or the sampling function. 
( 2) If we define 

then 

s( ) = { T, if 1 E (-n, n]; 
1 0, otherwise; 

s(t) = 2Tnsinc(27l'nt), 

and (5) reduces to ( 4). 

In Theorem 2, the functions f and s are generally complex-valued. 
Let us write 

f(t) = g(t) + ih(t), 

and 
s(t) = u(t) + iv(t), 

where g, h, u and v are real-valued functions. Then it is immediate from 
(5) that 

CXl 

g(t) + ih(t) = L [g(nT) + ih(nT)][u(t- nT) + iv(t- nT)]. 
n=-= 

Equating real and imaginary parts, we obtain 

CXl 

g(t) = L [g(nT)u(t- nT)- h(nT)v(t- nT)], (6) 
n=-= 

and 
CXl 

h(t) = L [g(nT)v(t- nT) + h(nT)u(t- nT)]. (7) 
n=-= 

Discussion. Iff is real-valued, then (6) and (7) yield 

CXl 

f(t) = L f(nT)u(t- nT), (8) 
n=-= 

and 
CXl 

0 = L f(nT)v(t- nT). (9) 
n=-= 
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(1) Equation (8) indicates that the function f can be reconstructed from 
its sampled values, using only the real part of s. Based on this obser­
vation, we may show that a function r E PW1;(2T) which can be used 
as the kernel for reconstructing real-valued functions in PWn need not 
satisfy r = T on [-n, S1]. Indeed, consider a function s E PW1;(2r) 

such that 

{ 

2T2(1- 1/(2T))/(2TS1- 1), if IE (n, 1/(2T)]; 
s(!) = T, if 1 E [-n, n]; 

0, otherwise. 
(10) 

Then taking the inverse Fourier transform of s, and defining r to be 
Re{s}, we obtain 

r( t) = TS1sinc(21rS1t)-[sinc2
( 7rt/(2T))/4-T2 S12 sinc2 ('7rS1t)]/(2TS1-1 ). 

(11) 
It follows from ( 8) that r can be used as a kernel to reconstruct any 
real-valued function f in PWn from its sampled values. However, a 
direct calculation gives 

{ 

2T2
( 1 - 1/(2T))/(2TS1- 1), 

r _ 3T/2, 
(!)- -2T2 (1 + 1/(2T))/(2TS1- 1), 

0, 

In particular, r =/:.Ton [-n,n]. 

if 1 E (n, 1/(2T)]; 
if 1 E [-n, n]; 
if IE [-1/(2T), -S1); 
otherwise. 

(2) It is interesting to observe that for a fixed v, where v is the imagi­
nary part of a functions satisfying the hypothesis of Theorem 2, any 
function f in PWn satisfies (9). 

We shall now give some examples of real-valued functions fin PWn. 
For the construction of such functions, the following proposition is often 
useful. 

Proposition 1. A complex-valued function f is in PWn if and only if 

f = g + ih 

for some real-valued functions g and h in PWn. 
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Proof. Suppose that f is in PWn. Since PWn is characterised by (2) 
(see Section 1), by taking real and imaginary parts, it follows that 

2f!(g * k) = g, 

and 
2f!(h * k) = h, 

where k is given by (1), g = Re{f} and h = Im{f}. Observe that 

IRe{!} I, IIm{f} I ::=; If!. 

Since f is in L2 (R), g and h are also in L2 (R). Thus (2) implies that g, 
hE PWn. 

Conversely, if f = g + ih for some real-valued functions g and h in 
PWn, then 

whence f E L2 (R). Using similar arguments as above, it follows from 
the characterisation (2) that f E PWn, and the proof of Proposition 1 is 
complete. 

Remarks. 
(1) Proposition 1 provides us with a scheme for constructing real-valued 

functions in PWn. Indeed, consider a function FE L 2(R) with supp 
F ~ [-f!,f!]. By taking the inverse Fourier transform ofF, we obtain 
the function f = g+ih, where g and hare real-vaued functions. Since 
f is in PWn, it follows from Proposition 1 that g and hare real-valued 
functions in PWn. 

(2) It is sufficient to perform numerical experiments on Theorems 1 and 
2 with only real-valued functions. Extension of experimental results 
to complex-valued functions in PWn is simple, since Proposition 1 
characterises PWn in terms of real-valued functions in the space. 

Some examples of real-valued functions fin PWn are listed in Table 1. 
Note that the function f 3 is obtained by defining it to be the imaginary 
part of the inverse Fourier transform of the function 

{ 

1, if I E [0, f!]; 
F(!) = -1, if IE [-f!, 0); 

0, otherwise. 
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J 
1 
2 
3 

4 

z fi 
1 sinc:l ( 1rnt) 
2 2sinc:l(7rn(t- 1))- 5sinc;j(0.67rn(t + 5)) +sine' (0.21rn(t- 3)) 
3 (1- cos(21rnt))j( 1rt) 

Table 1. Examples of functions fin PWn. 

Since we are considering only real-valued functions J, by (8), it suffices 
to use kernels that are the real parts of functions 8 which satisfy the 
hypothesis of Theorem 2. Some examples of such kernels are stated in 
Table 2. The right-hand column of Table 2 gives the rates of decay of 
the kernels 8j(t) as t tends to ±oo. Note that the functions 8 1 and 82 are 
obtained by taking the inverse Fourier transform of the functions S1 and 
s2 respectively, where 

S
1

( )={T, if 1 E[~n,n); 
1 0, otherwise; 

and 

{ 

2T2(1- 1/(2T))/(2TQ- 1), if IE (n, 1/(2T)); 
T if 1 E [-n,n); 

S2 (1) = -2T2 ( I+ 1/(2T))/(2TQ- 1), if IE [-1/(2T), -n); 
0, otherwise. 

The function 8 3 is obtained by defining it to be the real part of the inverse 
Fourier transform of the function 

{ 

e'Y, if 1 E [0, 1/(2T)); 
S3( I) = T, if 1 E [-n, n); 

0, otherwise. 

Finally, 8 4 is precisely the function r in ( 11), which is the real part of the 
inverse Fourier transform of the function in (10). 

8· J Order 
2T0sinc( 21rflt) O(t 1 ) 

T:l( cos(27r0t)- cos( 1rtjT))j( 7r:t.{"(l - 2TO):l) O(t -:t) 

2TOsinc(27rOt) + { e1/l2'1 'Jcos( 1rtjT) - eucos(27r0t)+ O(t 1 ) 

21rt( e1f( 2T)sin( 1rtjT)- e0 sin(27r0t))} /(1 + 47r2 t2 ) 

r.rnsinc(27r0t)- (sinc:l(7rt/(2T))/4- T:tn:tsinc:l(7rnt))/(2Tn- 1) O(t 1) 

Table 2. Examples of kernels 8. 

Note that for our numerical experiments in Section 4, we shall use 
the functions f and 8 given in Tables 1 and 2. 

76 



§3. Irregular Sampling 

We shall now introduce the notions of a frame and a frame operator, 
which will be used in the formulation of the irregular sampling theorem. 

Definitions. 
( 1) Let H be a separable Hilbert space. A sequence { hn} ~ H is a frame 

if there exist constants A, B > 0 such that for all f E H, 

CXl 

n=-ex> 

where ( , } is the inner product on Hand llfll = (!, !}1/2 is the norm 
of f in H. The constants A and B are known as frame bounds. 

(2) The frame operator of the frame { hn} is the function S : H ~ H 
defined by 

CXl 

n=-ex> 

(3) Let L 2 [ -01 , 0 1 ] be the separable Hilbert space of square-integrable 
functions over [-01 ,01]. Define et('y) = e2rrit1 • Then a sequence 
{ Ctn} is said to be a Fourier frame for L2 [ -nl' nl] if it is a frame for 
L 2 [-n1,n1]. 

The irregular sampling theorem that we shall examine is 

Theorem 3. (Benedetto and Heller [2]) Suppose that 0 < n < 0 1 . 

Let the sequence {tn} ~ R have the property that { e_tn} is a Fourier 
frame for L 2 [-01 , 0 1 ] with frame operatorS. Also, suppose that s satisfies 
s E L=(R), supp s ~ [-01,01 ] and s = 1 on [-n,n]. Then for every 
f E PWn, 

CXl 

f(t) = L Cn(f)s(t- tn), (12) 
n=-ex> 

where the convergence is in L2 (R)-norm, and 
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Remark. It can be shown (see (1]) that for f E PWn and n < Q1 , 

00 

en(!)= 2/(A +B) L((I- 2Sj(A + B))k }, e_tJ[-n1 ,nt], (13) 
k=O 

where A and B are the frame bounds. Furthermore, by approximating 
en(!) with the first two terms of the expansion in (13), we obtain 

en(!)"' [4f(tn)/(A+B)]- [8QI/(A+B?][f(tn)+ L f(tm)sinc(27rnlt)]. 
m#n 

(14) 
We shall now construct sampling sequences { tn} that satisfy the hy­

pothesis of Theorem 3. The following theorem is particularly useful for 
our construction. 

Theorem 4. (Benedetto [1]) Suppose that n 1 > 0. Let the sequence 
{ tn} ~ R have the property that { tn} is strictly decreasing, lim tn = 

n---+±oo 

=foo, and 

Assume that 2TQ1 < 1. Then { e_tn} is a Fourier frame for L 2 [ -n1 , Q1 ] 

with frame bounds A and B satisfying 

Remark. It is immediate from (15) that 
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Construction of Irregular Sampling Sequences 

(1) For 0 < d :s; T < 1l(2ni), suppose that 

tn = -(dn + (T- d)cniM), (17) 

where n E Z, and {en} is a nonconstant increasing sequence with 
M = sup(cn+l -en) finite. Such a sequence { tn} satisfies Theorems 
3 and 4. If, in addition, the sequence {en} satisfies 

(18) 

for n;::::: 1; and 
(cn+l- en);::::: (en- cn-1), (19) 

for n :s; -1, then M = max{(c1-c0 ), (co-c-1)}. Indeed, (18) implies 
that 

(c1- co);::::: (c2- ci);::::: ... ; 

whence sup{(cn+l -en) : n ;::::: 1} = (c1 -co). Similarly, (19) gives 
sup{(cn+l- en): n;::::: -1} =(co- c-1)· 

It should be noted that if en = <P(n) for every n E Z, where <P : 
R---+ R is increasing, concave on (O,oo) and convex on (-oo,O), 
then (18) and (19) are satisfied. For instance, en = tan-1n. In this 
case, M = max{(tan-11- tan-10),(tan-10- tan-1(-1))} = 7rl4. 
Consequently, (17) reduces to 

tn = -(dn + 4(T- d)tan-1nl7r). (20) 

In the numerical experiments of Section 4, we shall use the sampling 
sequence defined by (20). 

(2) The Fourier frame associated with the sequence { tn} in (17) has frame 
bounds A and B satisfying (16). If (BIA- 1) is sufficiently small, 
(14) is a good approximation of (13). Thus we seek d and T that give 
sufficiently small ( B I A - 1). For 0 < d :s; T < 1 I ( 2ni), define 

X= 4T(e1rntd -1)1(7r2n 1d2(1- 2Tni)2) -1. 

Then ( B I A - 1) :s; X, and when X is sufficiently small, ( B I A - 1) 
is sufficiently small. Table 3 shows the values of X, A1 and B1 that 
correspond to some values of d and T for n 1 = 1; and A1 and B1 
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are the lower bound for A and upper bound for B (rounded to the 
nearest integer) respectively. 

d T X At = (1- 2Tf2t) 2 /T Bt = 4(e11'1ltd -1)/(7r2 f2td2 ) 

0.015 0.017 0.583 54 87 
0.028 0.030 0.614 29 48 
0.031 0.032 0.576 27 44 
0.033 0.041 0.978 20 41 
0.046 0.047 0.705 17 30 
0.053 0.059 0.982 13 27 

Table 3. Values of X, At and Bt that correspond to 
some values of d and T for f2t = 1. 

(3) It is sufficient to compute Table 3 for f2t = 1. Indeed, for any f2t > 0, 
defined'= d/Slt and T' = T/Slt. Then 

X= 4T'(e11'ntd' -1)/(7r2 f2t(d'?(l- 2T'S1t)2
) -1 

= 4T(e11'd -1)j(1r2 d2 (1- 2T?) -1. 

Thus, if d and T give sufficiently small (B/A -1) when f2t = 1, then 
d' and T' defined above also produce the same result for an arbitrary 
f2t > 0, and 

tn = -(d'n + (T'- d')cn/M) 

can be used as a sampling sequence. For instance, if f2t = 0.6, d = 
0.033 and T = 0.041, then d' = 0.0550 and T' = 0.0683. We shall use 
this pair of d' and T' in Section 4. 

(4) To find en(!) for a sampling sequence defined above, we need an 
approximation of the constant (A+ B) (see (14)). By construction, 
At ~ A ~ B ~ Bt, where At and Bt are defined as in Table 4. 
Since the frame bounds A and B are independent of the function f in 
PWn, (A+ B) may be taken to be the value of (Ao + B 0 ) that gives 
the best possible reconstruction of a particular function f using (12) 
among all integers Ao 's and B 0 's satisfying At ~ A0 ~ Bo ~ Bt. An 
example of such a function is f( t) = sinc2 

( 1rSlt ). 

§4. Numerical Experiments 

In this section, we shall perform some numerical experiments on The­
orems 2 and 3. 
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§4.1. Regular sampling 

In our experiments on Theorem 2, we shall approximate the functions 
fi, fori= 1, 2, 3 (see Section 2), by !i,j,N, where n is taken to be 0.5, and 
!i,j,N is defined by 

N 

!i,j,N(t) = L fi(nT)sj(t- nT). (21) 
n=-N 

Here, N is a positive integer, t runs from -10 to 10 while stepping up by 
0.1, and Sj, for j = 1, ... , 4, are the kernels given in Section 2. All the four 
kernels are even functions and they tend to zero as t tends to ±oo. 

Our aim here is to compare the performance of the different kernels 
at various sampling rates. Let N(T, R) denote .the minimum N required 
to attain a signal-to-noise ratio of R dB when the sampling period is T. 
Tables 4 to 6 show the values of N(T, R) for the functions fi, h and fa. 

s· J N(.1, 30) N(.1,50) N(.1, 70) N(.99, 30) N(.99, 50) N(.99, 70) 
1 29 89 113 3 9 15 
2 32 91 97 4 10 14 
3 60 114 212 4 10 14 
4 29 89 108 3 9 15 

Table 4. Regular sampling experiments on fi. 

s· J N(.1, 30) N(.1, 50) N(.1, 70) N(.99, 30) N(.99,50) N(.99, 70) 
1 69 97 105 7 10 10 
2 71 98 102 8 11 11 
3 60 114 212 4 10 14 
4 29 89 108 3 9 15 

Table 5. Regular sampling experiments on h. 

s · J N(.1, 30) N(.1, 50) N( .1, 70) N(.99, 30) N(.99, 50) N(.99, 70) 
1 112 > 1000 > 1000 13 104 > 1000 
2 94 98 108 14 28 36 
3 750 > 1000 > 1000 14 26 30 
4 92 512 > 1000 13 35 510 

Table 6. Regular sampling experiments on h. 
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Note that perfect reconstruction of a function is generally not possible 
if we undersample, that is, sample below Nyquist rate. If we undersample, 
it is not possible to reconstruct any of the fi 's with N ~ 1000, while 
atttaining a signal-to-noise ratio of 30 dB. (In numerical examples, a 
signal-to-noise ratio of 30 dB can be easily attained if we sample at, or 
above, Nyquist rate.) This is due to the phenomenon of aliasing. On 
the other hand, good approximations of the fi 's are easily obtained while 
sampling at, or above, Nyquist rate. Indeed, a signal-to-noise ratio of 70 
dB can be attained with N much less than 1000. If we sample slightly 
above Nyquist rate, all the four kernels give similar results. This is because 
.51 , ... , .54 differ only in the interval [-1/(2T), -n) U (n, 1/(2T)], which is 
small when the sampling rate is close to that of Nyquist. 

If we oversample, that is, sample above Nyquist rate, then more terms 
have to be taken before good approximations are possible, as (5) is essen­
tially an interpolation formula. Thus when T is small, N has to be large. 
Observe that while oversampling, 8 2 performs better than the other three 
kernels, in the sense that less terms need to be taken for good approxima­
tions of the fi's. This is because as t tends to ±oo, 8 2 decays in O(t-2

), 

whereas the other kernels decay in O(t-1 ) (see Table 2). Note that when 
n is large, a term in the series (5) is small, and thus can be dropped. Since 
8 2 decays faster than the other kernels, less terms are needed to obtain a 
good approximation of the infinite series (5). 

Finally, note that we have also performed the same numerical exper­
iments with n = 7, and similar results were obtained. 

§4.2. Irregular sampling 

In our experiments on Theorem 3, we shall assume that n = 0.5 and 
!11 = 0.6, and use the sampling sequence 

tn = -(d'n + 4(T'- d')tan- 1 n/rr), 

where d' = 0.0550 and T' = 0.0683. We shall attempt to reconstruct the 
same functions fi, h and h as in Section 4.1. The kernels used here are 
8 5 and 8 6 , which are given by 

8 5 (t) = 2!1sinc(2rrflt), 

and 
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These kernels are obtained by taking the inverse Fourier transform of 

and 

Ss( ) = { 1, if 1 E [:-n,n]; 1 0, otherwise; 

{ 

( 1- ni);(n- ni), if 1 E (n, n1]; 
s

6
(1)= 1, ~f 1 E[-n,n]; 

-(1 + nt)j(n- ni), 1f 1 E [-n1, -n); 
0, otherwise; 

respectively. The functions fi are approximated by 

1000 

Ji,j(t) = L Cn(fi)8j(t- tn), 
n=-1000 

where cn(Ji) is given by (14), t runs from -10 to 10 while stepping up 
by 0.1, and 8j, for j = 5, 6, are the kernels given above. The signal-to­
noise ratio obtained by this approximation is compared to that obtained 
by using (21) with N = 1000 and j = 1, 2. Three sampling periods for 
(21) are considered. They are the smallest (d'), average (av) and largest 
(T') difference between consecutive sampling points from n = -1000 to 
n = 1000 in the irregular sampling sequence { tn}. The results of the 
experiments are shown in Table 7, where SNR(8j, P) denotes the signal­
to-noise ratio obtained when using the kernel 8j· If the regular sampling 
formula (21) is used, then P denotes the sampling period. 

fi 

1 
2 
3 

Irreg. Samp. Reg. Samp. 
SNR SNR SNR SNR SNR SNR SNR 

(8s,-) (86,-) ( 81' d') (81,av) ( 81, T') (82, d') (82, av) 
61.9 61.6 123.3 123.3 129.6 163.5 163.5 
56.6 56.6 113.0 113.0 119.1 173.9 173.9 
44.2 57.8 44.5 44.6 46.4 136.7 136.7 

Table 7. Comparison of experimental results between 
regular and irregular sampling. 

SNR 
(82,T') 
167.0 
177.8 
140.3 

We observe that although fairly good approximations are obtained 
using irregular sampling, regular sampling generally gives even better ap­
proximations. We have also performed the same numerical experiments 
with n = 7, and similar results are obtained. 

83 



§5. Conclusion 

We have studied the reconstruction of a function in the Paley-Wiener 
space from certain regularly, or irregularly, sampled values of the function. 
Among the cases we have examined, the regular sampling theorems (The­
orems 1 and 2) give better results than the irregular sampling theorem 
(Theorem 3). In our experiments, the average sampling rate for irregular 
sampling is much higher than Nyquist rate, the minimum regular sampling 
rate required for perfect reconstruction. However, for the same number of 
terms taken, the regular sampling theorems approximate a given function 
better than the irregular sampling theorem. It is not known to us whether 
there are situations in which the reverse is true. 

Another outstanding issue is to find a better way of approximating the 
frame bounds A and B that correspond to the irregular sampling sequence 
{tn}. Our method provides only a rough estimate of (A+ B), although it 
gives satisfactory experimental results. 
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