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1. Introduction 

A vector is a collection of items. A set of vectors with certain proper­
ties, such as with the same number of items, forms a vector space. Rn is 
the vector space wherein the vectors have n real items each. If the items 
are complex numbers, en is used to denote the vector space. Rn c en, 
I.e., Rn is a subspace of en. For x,y E en, define z =X± y as 

z= 
[ 

X1 ± Y1 l 
XnlYn 

or z, = x, ± Yi, i = 1, ... , n 

and z E en. 
A matrix is a rectangular array of numbers. Let A be a matrix of size 

n x m, i.e., n rows by m columns, then 

a~m ] or [a,; ]i=1,2, ... ,n; ;=1,2, ... ,m 

anm 

where i and j are known as the row and column number respectively. For 
a square matrix of size n X n, au, a22 , ••• ,ann are known as the diagonal 
entries. Rnxn is1 the matric space containing n X n matrices with real 
numbers and enxn, complex numbers. For A, B E enxn, define P = A+ B 
and Q = AB as 

p = [ au 7 bu 

an1 + bn1 

a1n + b1n l 
: or Pi; = a,; + b,,;, 

ann~ bnn 

i,j=1,2, ... ,n, 
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n 

or Qii = L 0-i~cb~e;, 
lc=l 

i,j=1, ... ,n, 

and P, Q E cnxn. Generally AB =/= BA. For other matrices, AB is defined 
if and only if the number of columns of A equals that of rows of B. A 
square matrix A is singular if and only if IAI = 0. A vector is a special 
matrix with size n x 1. 

Consider the system of linear equations 

where aii and bi are real constants and Xi are unknowns (i,j = 1, 2, ... , n). 
The above linear system can be written in an equivalent matrix form: 

Ax= b, A E Rnxn, x,b ERn, 

where 

Systems of linear equations have a wide range of applications in both 
theoritical and practical sciences. Our study attempts to give a brief in­
troduction to the numerical solutions of the linear systems together with 
some important theorems in linear algebra. Several algorithms for solving 
linear systems are developed using Fortran 77. Partial pivoting is intro­
duced to achieve accuracy and applicability. L U decomposition is studied 
and the operation count for Gaussian elimination is given and compared 
to other methods. The programs are then tested with an ill-conditioned 
system and a nuclear reactor problem. Errors in the discretizations are 
estimated. 
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2. Analysis and Algorithms 

(a) Preliminary and Analysis 
Let A be ann X m matrix. The transpose of A, denoted AT, is obtained 

by making the ith row of A the ith column of AT and is given by 

The conjugate transpose of A, denoted A*, is obtained in a similar way 
and is given by 

* -ai; = a;i· 

Thus AT and A* are m x n matrices. We may prove 

Lemma 2.1. For A, B E cnxn 
(a) A+B = B+A, (b) (A+B)+C = A+(B+C), (c) A(B+C) = 

AB+AC; 
(d) A(BC) = (AB)C, (e) (A+B)T =AT +BT, (f) (AB)T = BT AT. 

A is called symmetric if AT= A, and Hermitian if A* =A. The term 
symmetric is generally used only with real matrices. Let A be a Hermitian 
matrix. It is called positive definite if and only if XT Ax > 0, Vx E en' X t­
o = [0, 0, ... 'o]T. Positive definite matrices possess important properties 
and occur in a wide variety of applications. 

A norm of a vector x is a function f : Rn ~---+ R which gives the size of 
the vector and is denoted by llxll· A useful class of norms are the Holder 
or p-norms defined by 

1 

llxllp = (jx1jP + · · · + lxniP)P P ~ 1. 

Of which llxll 17 1!xll2 and llxlloo are the most important. Similar norms 
can be defined for matrices. We have 

Theorem 2.1. If A E Rnxn, the following statements are equivalent. 
(a) A= MMT with ME Rnxn and jMj f. 0. 
(b) A is positive definite. 
(c) There exists a lower triangular matrix L with L E Rnxn such that 

A= LLT. 

111 0 0 

L= 
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Proof. Let M = {mi;},A = {ai;}, i,;' = 1,2, ... ,n. Then MT = {m;i}· 

n n 

ai; = 2:::::: mu,mf; = 2:::::: mi~cm;~c, 
k=1 k=1 

n n 

a;i = 2:::::: m;~cmf. = 2:::::: m;~cmik· 
k=1 k=1 

Therefore A is symmetric. Furthermore, we have 

= (MTxfMTx 

= IIMT xll~ > 0, X ERn, X=/= 0 . 

Therefore A is positive definite. 0 

Corollary 2.1. If A E cnxn is positive definite, then ai; > 0 for i 
1,2, ... ,n. 
{b) Algorithm I: Gaussian Elimination 

Consider a real linear system 

Ax= b, A E Rnxn, x,b ERn, IAI =I= 0. 

We wish to reduce A to an upper triangular matrix which is easier to 
solve. The process of reducing A and subsequently solving for xis known 
as Gaussian elimination. Denote A by A (1), we have 

Step 1: Assuming aW =/= 0, for i = 1, 2, ... , n, define row multipliers 

and define 
(2) - (1) (1) . ai; - ai; - mila1; , J = 2, 3, ... , n, 
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b(2) - b(1) - . b(1) 
i - i m,1 1 • 

Leaving the fisrt row undisturbed and setting the first column below aW 
to zeroes, we obtain the system A<2>x = b(2) which looks like 

(1) 
au 
0 

0 

Ignore the first row and column and repeat the process for the submatrices 
until step (n -1) is finished. To show the general case, after (k -1) steps, 
k = 2, 3, ... , n, we have A (k) x = b(k), 

(1) 
au 

(1) 
aln 

0 

0 (k) 
akk 

(k) 
akn 

0 0 (k) a(k) ank nn 

Step k: Assuming a~~ =/= 0, for i = k + 1, k + 2, ... , n, define 

(k) 
_ aik 

m;k- W' 
akk 

(k+l) (k) (k) . k k 
a;; = a;; - m;kak; , J = + 1, + 2, ... , n, 

b(k+1) - b(k) - . b(k) 
i - i m,k k • 

After (n- 1) steps, the sysem A(n),x = b(n) looks like 

(1) (1) ... . . . (1) 
au a12 a1n X1 

0 (2) (2) 
a22 a2n .x2 

(n-1) Xn-1 an-1,n 

0 0 a(n) Xn 
nn 

which is quite easy to solve by back substitution. First 

b(n) 
n xn=w, 

ann 
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b~2) 

b(n-1) 
n-1 
b(n) n 

(2.1) 

(2.2) 

(2.3) 

(2.4) 



then 

k = n- 1, n- 2, ... , 1. (2.5) 

This completes the algorithm. Equations (2.1) to (2.5) are used to 
write a Fortran program (Program 1) which performs the Gaussian elim­
ination. It is to be noted that Gaussian elimination algorithms are not 
unique. There are other ways to reduce A to an upper triangular or even 
a lower triangular matrix. In that case, forward substitution is used. Re­
gardless of the different methods used, the solutions should be identical 
theoritically. However, from the point of view of numerical analysis, dif­
ferent computers and programs may give different answers for the same 
problem. We will see this in the next section. 

(c) Algorithm II: L U Decomposition 
Construct the matrices L and U where 

1 0 0 uu ul2 ... . . . U1n 

m21 1 0 U22 

L= U= = A(n). 

1 o· Un-1,n 

mn1 ... . . . mn,n-1 1 0 0 Unn 

This is called the LU decomposition of A which is very useful as Land U 
can be stored together as a matrix(ignoring the diagonal entries of L) in 
the computer. If A appears in other systems, then we need only to modify 
b using the row multipliers to obtain the solution. 

Lemma 2.2. A = LU and IAI = uuu22 ••• Unn· 

Proof. For j 2: i, 

[ mib ... , mi.i-b 1, 0, ... , 0 ] uii 
0 

0 
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i-1 i-1 

= "\""' m,·~calc(~) +a(') = "\""' (a(~) - a(~+l)) + a(') LJ J IJ LJ IJ IJ IJ 
lc=1 lc=1 

- a(t)- a·· - ij - .,. 

Fori> j, 

[ m,h · · ·, mi,i-1! 1, 0, · · ·, 0 ] u;; 

0 

j-1 

= L m,~cu~c; + m,;u;; 
lc=1 

0 

j-1 j-1 

= L m,~ca~~) + m,;aW = L (a~;)- a~;+l)) + aW 
lc=1 lc=l , 

= a~J) =a.;. 

Therefore A = LU. It follows that 

IAI=ILIIUI. 

But ILl = 1, therefore 

IAI = lUI = 'UntL22 • • • 'Unn• D 

(d) Operation Count For Gaussian Elimination 
At STEP 1, (n- 1) divisions are used to evaluate the row multipli­

ers. Then (n- 1)2 multiplications and (n- 1)2 subtractions are required 
to give A(2). Also (n- 1) multiplications and (n- 1) subtractions are 
needed to modify b(1) to b(2). Let MD(·) and AS(·) denote the number of 
multiplications and divisions and the number of additions and subtrac­
tions respectively, we can sum up the total number of operations. Since 
( n -1) steps are needed, and in each successive step the side of the current 
submatrix shrinks by 1 unit, we have 

n-1 n-1 

AS(A) = L r 2 MD(A) = L (r2 + r); 
r=1 r=1 
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n-1 n-1 
AS(b) = L r MD(b) = L r; 

r=1 r=1 
n-1 n-1 2n3 - 2n n3 

AS(A) + AS(b) = L r
2 + L r = 

6 
~ 3' 

r=1 r=1 
n-1 n-1 2n3 + 3n2 - 5n ns 

MD(A)+MD(b)=L:r 2 +2L:r= 
6 

~3. 
r=1 r=1 

The number of additions is almost the same to that of multiplications 
and divisions, so we consider only the latter. Gaussian elimination is 
less troublesome than multiplying two n x n matrices which requires n3 

operation. It is also better than the Cramer's rule by which the operation 
count is (n + 1)! if the determinants are computed using expansion by 
minors or the Gauss-Jordan method which requires ln3 operations. 

(e) Algorithm III: Partial Pivoting 
In the algorithm, we assume that the pivot element a~~ f= 0, k 

1, 2, ... , n. This assumption can be removed by switching the rows such 
that the pivot element is always nonzero. But in computer operations, a 
zero may not be exactly zero due to errors, and if we happen to make this 
'nonzero' the pivot, gross error will result. Partial pivoting is a technique 
designed to avert this danger. 

Define 
Si = m?JC la~!)l, k = 1,2, ... ,n. 

k$t$n 

If Si f= Ia~~ I, interchange the ith row and the kth row in A and B and it 
is certain that the pivot element will not be zero, for if a~!) = 0, IAI = 0, 
contrary to the condition of A. Note that by doing so, lmik ~ 11 for i = k+ 
1, k + 2, ... , n, and this will prevent the elements from being magnified in 
subsequent elimination which will cause severe loss of significant figures in 
the floating point representation of numbers in the computer. In Program 
2, partial pivoting is used. 

3. Applications 

(a) An fll-conditioned {Stiff) Problem 
Given the system 

6x1 + 2x2 + 2xs = -2; 
2 1 

2x1 + 3x2 + 3xs = 1; 
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X1 + 2x2 - X3 = 0. 

Solving without partial pivoting using Program 1, the solution, 

x 1 = -3.97682137 X 107
, x2 = 1.19304647 X 108

, x3 = -5.00000000, 

is disastrous. But with partial pivoting (Program 2), the approximately 
correct solution is found: 

X1 = 2.60000006, X2 = -3.79999990, Xs = -4.99999988. 

Using another version of the Gaussian elimination (Program 3) without 
partial pivoting, we get the wrong answers: 

X 1 = 1.33333333, x 2 = 0.00000000, x 3 = -5.00000000. 

With partial pivoting, the solution is even closer to the true one: 

X 1 = 2.60000006, X2 = -3.80000000, Xs = -5.00000000. 

This type of problem is called ill-conditioned or stiff. The slight differ­
ence in the two correct solutions is due to comput~r round-off error. It is 
stressed that by doing hand calculations, we get the exact solution with 
or without partial pivoting. 

(b) A Nuclear Reactor Problem 
In a unit square area n of a nuclear reactor, the pressure function U 

satisfies the partial differential equation 

flU- aU= 0 

where a2 a2 
ll = ax2 + ay2 and a= sin

3 (x + y), 

with boundary functions given as follows: 
A : u = p = (1- y) 2y2

' if X= 0, 0 ::; y ::; 1; 
B : U = Q = sin3 411"x, if 0 ::; x ::; 1, y = 1; 
C : U = R = xy ( 1 - y), if x = 1, 0 ::; y ::; 1; 

(3.1) 

D : U = S = sin 211"x, if 0 ::; x ::; 1, y = 0. We wish to find the 
numerical values of U for points in n. Let N ~ 1(N E Z+), define 

h= 1 
N + 1' 

(3.2) 
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(x;, Yk) = (jh, kh) E 0, j, k = 1, 2, ... , N. 

These are called grid points or mesh points and they are labelled in 
the order shown in the sketch. Let the value of U at point n ( n = 
1, 2, ... , N 2 ) be Un. We approximate equation (3.1) by means of the fi­
nite difference method. Using central differences, we have 

8 2U ,.._ u A- U(x + h,y)- 2U(x,y) + U(x- h,y) 
8x2 - zz- h2 

82U ,.._ UAA - U(x, y +h) - 2U(x, y) + U(x, y- h) 
8y2 - 1111- h2 

Substituting the above expressions into (3.1), we get the difference equa­
tion 

U(x+ h, y) + U(x- h,y) + U(x, y+h) + U(x,y- h)- (4 +ah2 )U(x, y) = 0. 
(3.3) 

For the point (x;, Yk) E 0, from equation (3.3), 

U(x;+b Yk)+U(x;-b YA:)+U(x;, Yk+I)+U(x;, Yk-1)-(4+ah2)U(x;, Yk) = 0. 
(3.4) 

This will be used to find the equation on each grid point. For example, 
at point 1, j = k = 1, equation (3.4) becomes 

which gives 

U2 + P(O, h)+ UN+l + S(h, 0) - (4 + ah2 )U1 = 0. 

Bringing the constants to the right, we obtain the first linear equation. 
Similarly for the remaining grid points. Arranging the N 2 equations in N 2 

unknowns into a system according to the order of grid points, we can solve 
it using Gaussian elimination. Let us call the system AU = b. A data file 
is built using Program 4 to generate the entries of A, then Program 1 or 
2 is used to solve the system and the numerical solutions are satisfactory. 

We observed that the matrix A has several interesting properties: 
(a) A is called sparse because most of its elements are zeroes. 
(b) Nonzeroes can only be found in five diagonal lines, so A is called a 

band matrix. 
(c) It is called block tridiagonal because if A were partitioned into N 2 

N x N matrices, most nonzeroes will be found in blocks along the three 
main diagonal lines. 
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(d) It is symmetric and positive definite and by lemma 2.4, a lower 
triangular matrix E exists such that A = E ET. 

(e) It is diagonally dominant, meaning the absolute values of the di­
agonal elements are numerically larger than others in their correponding 
rows and columns. 

(f) The matrices L and U obtained by LU decomposition are also 
sparse. 

This type of matrix has important applications in solving many prac­
tical problems. 

(c) Truncation Error In The Discretization 
Using Taylor's expansion, we know that the error in Uu,, 

2h2 a4U 2h2"-2 a2"U 
=--+···+ --+··· 4! ax4 (2n)! ax2" • 

Similarly error in U00 , 

2h2 a4U 2h2"-2 a2"U 
err II = -, -a 4 + • • • + ( ) I a 2n + .... 4. y 2n. y 

Define 

Total error 

00 h2k-2 
= 2 2: -( k)' ll2"u. 

k=2 2 . 

As N becomes larger, h becomes smaller from equation (1), and the 
approximation becomes more accurate. 
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