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Suppose that you are offered the choice of one from a set of n possible 
prizes. Each prize has a value represented by a random variable. We shall 
compare three different rules for revealing particular values to you. Let us 
assume that the random variables X1 , X2 , ••• , Xn, representing the val­
ues, are non-ne,gative and independent of one another. Their probability 
distributions are given, so we know the expected values in advance. Let 

ll; = E(X;) 

for j = 1, 2, ... , n. Each Jl; ;::: 0 and we suppose that all these expectations 
are finite. 

The first rule to be considered is that you may inspect all the prizes 
before making your choice. In this case, it is clear that the maximum 
possible expectation is 

Now suppose that you must make up your mind without inspecting any 
of the prizes. Then the best you can do is to find the maximum of 
Jl1 , Jl2, ... , lln and the expected reward is 

~n = max (Ill ' 112 ' ... ' lln). 

The third rule is more interesting : suppose that you see the prizes one at 
a time but, at each stage, you must reject all those examined so far before 
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you are allowed to inspect another one. For convenience, let us imagine 
that the values X"', Xn._ 1 , ••• , X 1 are revealed sequentially in that order, 
until . you decide to stop and select the one you have just observed. Let 
tin. be the maximum expectation obtained by using an optimal stopping 
procedure.We have t11 = JJ, and t12 = E{max(X2 ,t~t}}. This follows by 
considering the decision whether to accept X2 or not. In general, 

(1} 

It is intuitively obvious and nvt difficult to prove that 

(2} 

for n ~ 1, with equality when n = 1. As we shall see, "'"' and tl"' can be 
much larger than w"', even when all the underlying random variables have 
the same distribution. 

The aim here is to illustrate the growth of"'"' and tin. as n increases by 
giving some examples. Then we shall investigate how much of an advan­
tage can be obtained from having full information, rather than sequential 
information. The main result is that 

(3} 

always. This relation was conjectured by R. Haydon, who discovered it 
while investigating problems in mathematical analysis not directly related 
to probability. He mentioned it during a seminar at Sussex in 1989 and 
one of my colleagues, G. B. Trustrum, produced a proof soon afterwards. 

It now seems surprising that the general inequality (3} was not dis­
covered earlier. Many sequential decision procedures and optimal choice 
problems have been investigated in recent years : for example, see [1] or 
[2]. The proof given later is based on analysing the recurrence relation (1}. 
The relation can also be used in a different way to find optimal policies 
for selling an asset and this will be the final topic. 

§2. Preliminaries 

A random variable X can be described by a probability density func­
tion I or by specifying discrete probabilities at certain points. We can 
include both types by using the distribution function F defined by 
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F(x) = P(X ::; x) for all r~al x. For non-negative random variables 
F(x) = 0 when x < 0 and, if X has a continuous density/, 

F(x) = 1z f(y)dy, F'(x) = f(x), 

for x > 0. In :mch cases, the mean J.t is given by 

E(X) = 1oo (1- F(x))dx. (4) 

This will bt! useful because it can be extended to show that, for any positive 
constant v, 

E{max (X, v)} = v + 1oo (1 - F(x))dx. (5) 

The first two examples illustrate the behaviour of the sequences { Un} 
and { Vn} when the independent random variables xl' x2' ... , Xn all have 
the same density f and distribution function F. Note that the distribution 
function of max ( X 1 , X 2 , ••• , Xn) is given by the product law: 

Hence, by using (4), 

Un = 100 

(1- Fn (x))dx. (6) 

Example 1: Let f(x) = 1 for 0::; x ::; 1 and f(x) = 0, otherwise. Thus, 
X 1 , X2 , ••• , Xn are uniformly distributed on the interval [0,1]. 

We have F(x) = x for 0 ::; x ::; 1 and F(x) = 1 for x ~ 1, so (6) 
reduces to 

Un = t (1- Xn)dx = _n_. 
lo n + 1 

In this case, the common mean of all the random variables is J.t = i so 
wn = i for all n ~ 1. The sequence { Vn} starts with v1 = i and then for 
n ~ 2, 
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by using (1) and (5). This formula can be used to calculate v~, v3 etc., 
and we obtain the following table: 

n 1 2 3 4 5 10 20 
'-'n .500 .667 . 750 .800 .833 .909 .952 
Vn .500 .625 .695 .742 .775 .861 .920 

It can be shown that Vn ~ (n + 1)/(n + 3) and this bound is close, 
for large n. In other words, 

1 2 
u = 1- -- and v ~ 1 - --. 

n n+1 n n+3 

Example 2: Take f(x) .:..... e-s and F(x) = 1- e-s for x > 0. Here, the 
mean p, = 1, soWn = 1 for all n?: 1. The formula (6) shows that 

'-'n = 100 

{1- (1- e-s)"}dx 

and this can be evaluated by using the substitution y = 1 - e- s. 

We find that 

1 1 1 
'-'n = 1 + - + - + • • • + - • 

2 3 n 
The recurrence relation for the sequential gain Vn is easily obtained from 
(5): 

for n ?: 2 and v1 = u1 = 1. In this example, both '-'n and Vn are of order 
log n for larger n. It can be shown that 

log( a + n) ~ Vn < '-'n ~ 1 + log n 

always holds, where a = e - 1 ~ 1. 718. The sequence { '-'n} is well known: 
in particular, the difference '-'n - log n converges to a limit '1 ~ 0.577, 
known as Euler's constant. It can also be shown, with some difficulty, 
that Un - Vn. increases very slowly with n and Un - Vn --+ "( as n--+ oo. 

We now consider a simple discrete distribution which shows that '-'n 
and Vn can be of order n. Note that, since · 

max (X1, X~, ... , X") ~ X1 +X~ + ... +X", 

the corresponding expectations must satisfy '-'n ~ p,1 + p,~ + ... + J.l.n and 
so Un ~ np, when each J.£; = p,. 
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Example 3: Let K be a large constant and suppose that each of the ran­
dom variables X1, X2, ... , Xn takes the values 0 and K with probabilities 
1 - ~ and ~ , respectively. Then J.L; = 1 always. In general, Wn = 1 
and we also know that un ~ n. Now max(X1,X2, ... ,Xn) has only two 
possible values here., 0 and K. Hence, 

Un = K{1- P(Xl = x2 = ... = Xn = 0)}, 

Un = K{1- (1- _!_t}. 
K 

It is also easy to check that, for this example Vn = Un for each n ~ 1. This 
can be established by using (1). Since vn~ always lies between 0 and K, 
we have 

1 
Vn = 1 + (1- K)vn-1• 

This holds for n = 2, 3, ... with v1 = 1 and it can be shown by induction 
that 

1 
Vn = Un = K{1- (1- K)n}. 

For any fixed n ~ 1, this expression can be made as close as we please to 
n by choosing a sufficiently large value for the constant K. 

The next two examples suggest lower bounds for the ratio Vn / Un. 
Both are concerned with the case n = 2. In Example 4, the random 
variables xl and x2 have the same distribution and the distribution is 
chosen to indicate the lowest possible value of v2 / u2. Example 5 shows 
that when xl and x2 are allowed to have different distributiops, v2/u2 can 
be reduced to levels arbitrarily close to i and, according to (3), Vn fun ~ i 
always holds. 

Example 4: As before, let K be a large positive constant and let p be a 
probability, 0 < p < 1. Suppose that X1 and X2 are independent, each 
having possible values 0, 1 or K. The corresponding probabilities are 

P(X; = 0) = p, 
pK 

P (X; = 1) = 1 - K , 
-1 

p 
P(X; = K) = K . 

-1 

It follows that E(X;) = 1, for j = 1, 2, and it is easy to check that 
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Then we have 
u2 < 1 + 2p- p2 = 1 + p(1- p) 
v2 - 1 + p 1 + p 

and it is clear that we can choose K to get u2 lv2 arbitrarily close to 
this. Now it is a straightforward matter to maximise the expression p(1-
p)l(1 + p) with respect top. The maximum occurs when p = J2- 1 and 
we then obtain u2 lv2 ~ 4-- 2J2 ~ 1.172. This means that 

v2 > 2 + J2 ~ 0.854. 
u2- 4 

This example shows that the ratio v2 I u2 can be very close to (2 + v'2) I 4. 
In fact, it is impossible to get below this level if the random variables X 1 

and x2 have the same distribution, but the proof will not be attempted 
here. 

Example 5: Let X 1 take the values 0 or K with probabilities 1- 11 K 
and 11 K, respecHvely. Thus, p,1 = 1 and we also have u 1 = v1 = 1. Now 
define the distribution of x2 so that 

6 
P(X2 = 1) = 1- K , 

-1 
6 

P(X2 = K) = , 
K-1 

where 6 is small. Since v2 = E{max(X2 ,vi}} and X2 ;:::: v1 = 1 always, 
we have 

V2 = J.L2 = 1 + 6. 

Notice that max(X1 ,X2 ) = K, except when X 1 = 0 and X2 = 1. This 
makes it easy to evaluate 

1+6 
u2 =2+6- --. 

K 

The expressions for v2 and u2 make clear that the ratio v2 I u2 can be 
reduced towards i by choosing 6 very small and .K sufficiently large. 
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§3. Haydon's Conjecture 

We can extend Example 5 to show that Vn fun can be made arbi­
trarily close to i, for any given n > 2. Let X; = 0 with probability 1 
for each j = 3, 4, ... , n. Then it is obvious that 'Un = t£2 and Vn = v2, 
so Vn / Un = V2 / u2 ~ i, as before. We now establish that the inequal­
ity Vn / un ~ i always holds. This is an immediate consequence of the 
following proposition. The proof is due to G. B. Trustrum. 

Proposition: Let X1, X2, ... , Xn be any non-negative random variables 
with finite means p,1, p,2, ... , Jln. Let v1 = p,1 and define 
v2 = E{max (X2, vt)}, ... , Vn = E{max (Xn, Vn- t)}. Then 

'Un =E{max(X1,X2,: .. ,Xn)}~vn-1 +vn ~2vn. 

Proof: L~t Y,· = max (Xh v,._ t) for j ~ n, where v0 = 0 and Y1 = X1. 
We also define z,. = max(X;- v;_ 1,0), so that Y; = V;- 1 + z,.. Now use 
the fact that v0 ~ v1 ~ ... ~ Vn _ 1 to obtain 

Y; ~ Vn-1 + Z; 

for each j ~ n. It is clear that Y; ~ X; always. Hence, 

max(X1,X2, ... ,Xn) ~ max(Y1,Y2,•••,Yn) 

~ Vn- 1 +max(Z1,z2,···,Zn), 

1Ln = E{max (X1, x2, ... ,Xn)} ~ Vn-1 + E{maxZ1' z2, ... 'Zn)}. 

Since every z,. ~ 0, we have 

max ( Z1, Z2, ... , Zn) ~ Z1 + Z2 + ... , Zn. 

But z,. = Y,·- v;_ 1 and E(Z;) = v;- v;_ 1 from the definitions of Y,· and 
v;. It follows that 

E {max ( z1 ' z2' ... ' Zn)} ~ v1 - Vo + v2 - v1 + ... + Vn - Vn- 1 = Vn . 

This, together with the earlier inequality for 1Ln, shows that 1Ln ~ Vn _ 1 +vn 
and the proof is complete. 0 

Previously, we have assumed that the random variables X1, X2, ... , 
Xn are independent of one another, but the above proposition holds more 
generally. The independence assumption is needed for the interpretation 
of Vn as the maximum expected gain that can be obtained by choosing 
one of the values Xn, Xn- 1, ... , X1, when they are observed sequentially. 
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§4. Selling an Asset 

Our final topic is based on a slightly different interpretation of the 
sequence xl, x2, . . .. Imagine that you have a valuable object for sale and 
suppose that offers for it arrive independently at times 1, 2, .... These are 
represented by the random variables xl, x'2, .... , and you may continue 
to receive them for as long as you wish before deciding to accept one of 
them. There is a cost c > 0 per unit time for waiting. At each stage, you 
must decide whether to accept the latest offer or to reject it and wait for 
the next one at cost c. 

Suppose that the independent offers have a common probability den­
sity f and distribution function F ; let X represent the latest one. The 
optimal decision rule for dealing with it does not depend explicitly on the 
time. We define g(.z), for .z ~ 0, to be the maximum expected net gain 
that you can obtain, given that you have just observed X = .z. H you 
accept it, the gain is .z and no further offers are received. Otherwise, you 
must wait for the next offer Y and then maximise your expectation, given 
Y = y, say. It follows that 

g(.z) = max{.z, 1oo g(y)f(y)dy- c}. (7) 

Notice that the second term on the right does not depend on .z: the 
constant 

.\ = 100 

g(y)f(y)dy- c (8) 

represents the best you can do after rejecting .z. We now have 
g(.z) =max (.z, .\) and the integral can be simplified by using (5): 

1oo g(y)f(y)dy = E{max (Y, .\)} = .\ + 1oo (1- F(y))dy 

Hence, (8) reduces to 

1oo (1- F(y))dy =c. (9) 

The equation (9), together with the special form of the function 
g(.z) = max (.z, .\), determine the optimal decision rule for this 
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problem. It is easy to check that, for any positive constant c with 
c < p, = fooo (1 - F(y})dy, there is a unique A > 0 that satisfies (9). 
Then the rule is : accept the first offer that exceeds A. In other words, 
offers X1 < A, X2 < A, ..• should be rejected until the first time n at 
which Xn ~A. The expected net gain for this ~licy, starting at time zero 
and allowing for the cost of waiting, is just g(O) =A. 

For the uniform distribution of Example 1, the mean offer is p, = i 
and the solution of (9) is 

A=1-J2c 

for any c < i· Similarly, for the exponential distribution of Example 2, 
we obtain p, = 1 and if c < 1, the critical level is 

A= -loge. 

Note that A represents the effective value of your asset which depends on 
c and also on the distribution of the offers. 
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