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To statisticians, the model, data and methodology are essential. Their 
job is to propose statistical procedures and evaluate how good they are. 

Take a sample of size n from a Normal distribution N (p,, a 2
) with un­

known mean p, and variance a 2
• It is well known that the "best" estimator 

for p, is the sample mean, the average of all n observations. 

Here, given the model (Normal distribution) and data, the problem 
seems to be completely solved - the best estimator is found. However, 
unlike the mathematicians who can live in their own beautiful world of 
mathematics, the statisticians have to dirty their hands and face the re­
ality. 

What is the reality? Firstly, no model is exact in describing the real 
problem. Secondly, most classical (and optimal) statistical procedures can 
easily break down when some deviation from the model occurs or the data 
set contains just a few outliers. 

A classical procedure can be shown optimal only under a series of as­
sumptions such as Normality, linearity, symmetry, independence or finite 
moments. Violations of these distributional assumptions often nullify the 
optimality seriously. Even more dangerous is the occurrence of outliers, 
which may be a result of key punch errors, misplaced decimal points, 
recording or transmission errors, exceptional phenomena such as earth­
quakes or strikes, or members of a different population slipping into the 
sample. 

For example, with just one bad point, the sample mean can go every­
where, yielding no relevant information at all. Another good example is 
linear regression, an important statistical tool that is routinely applied in 
most sciences. 

* Written version of a colloquium talk delivered to the Department of Mathematics, National 
University of Singapore on 20 February 1990. The talk is intended to be nontechnical. 
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As an illustration, consider the simple model 

y, = a + bx, + e, ( i = 1, 2, ... , n) 

where y is the response variable (output) and xis the explanatory variable 
(input), e1 , e2 , ••• , en are independent random errors. Given observations 
(x,, y,) for i = 1, 2, ... , n, the classical fitting of the line y = a + bx is 
the least squares method. We find the regression coefficients (a, b) by 

n 

minimizing L:: (y, -a- bx,)2 over every pair (a, b). 
i= 1 

Dating back to 1809, Gauss introduced the Normal distribution as 
the error distribution for which LS is optimal, yielding a beautiful math­
ematical theory. Recently, people began to realize that real .data do not 
completely satisfy the classical assumptions, which often have dramatic 
effects on the quality of the fitting. The LS fitting is fooled easily by a 
single outlier as shown in the following example. 

Figure a contains five points {(x,,y.),i = 1,2, ... ,5} with a well 
fitting LS line. If we make an error in recording x1 , we obtain Figure b 
with one outlier in the x-direction, and its effect on the fit is so large that 
it actually tilts the LS line . 
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There are two possible ways that we can take for better and safer results. 
The first approach is to clean the data (e.g. removing outliers) before a 
classical treatment is applied. However, it is often impossible to detect 
outliers effectively without a robust method. What's more, the model is 
still not exact even after the data is cleaned. 

A better approach is to develop robust procedures. A good robust 
procedure should have the following features. 

(1) 

(2) 

It performs well at the idealized model in terms of consistency, effi­
ciency, etc. 
Small changes in the model or the data should have small effect on 
the result. 

(3) A larger deviation should not nullify the analysis completely. 
(4) It is computationally possible. 

Robust procedures are actcally in use long before the formal theory of 
robust statistics is developed by Huber in 1964. 

For example, Turkey in 1960 considered the efficiency of trimmed 
means for a location model {F(x- 0), 0 E R} with 

F(x) = (1- E)~(x) + E~(x/3) 
where ~(x) is the distribution function of the standard Normal. F(x) is 
a mixture of two Normal distributions as E ranges from 0 to 10%. The 
resulting distribution is still symmetric with slightly flattened tails. As E 

increases from 0 to 0.1, the efficiency of the sample mean decreases from 
100% to only 70%. However, the 6%-trimmed mean obtained by trimming 
the 6% largest and 6% smallest sample points and then averaging over the 
remaining observations retains its efficiency over 95% for all E between 0 
to 0.1. Moreover, the 6%-trimmed mean remains trustworthy if there are 
no more than 6% outliers in the sample. 

The most robust location estimator is the sample median (the mid 
point of the ordered sample). In order to formalize this aspect, we intro­
duce the notion of breakdown for any statistical estimate T( x1 , x2 , ••• , Xn). 
Let XO = ( x1 , x2 , ••• , Xn) be an initial sample. The breakdown point of 
T(x1, ••. , Xn) E RP is defined by 

E:(T;X0
) =min {m: sup IIT(Xm)ll = oo} 

n xm 

where xm is obtained by replacing m out of n points in X 0 arbitrarily. 
In other words, it is the smallest fraction of contamination that can cause 
the estimator T to take on values beyond all bounds. 

24 



Since one outlier can drive the sample mean over all bounds, the 
breakdown point for the sample mean is ~. (Typically, the breakdown 
point f~ (T, X 0

) does not depend on X 0 
.) The sample median has break­

down point close to ~, since the median remains bounded as long as more 
than half sample points stay bounded. 

For multivariate data, however, it is not all that easy to find a "me­
dian" with breakdown point as high as t, if we require affine equivariance 
of the estimator, i.e. 

T(Ax1 +b, ... ,Axn +b) =-AT(x, ... ,xn) +b 

for any nonsingular p x p matrix A and vector b E RP. 

Almost all known affine equivalent techniques before 1982 face the 
ubiquitous upper bound 1/(p+ 1) on their breakdown points. Those tech­
niques include convex peeling and iterative trimming. 

Convex peeling proceeds by removing the points on the boundary of 
the smallest convex hull containing all the data points, and repeating this 
several times until a sufficient number of points have been peeled away. 
Such a procedure may delete too many "good" points at the first few 
peelings, because each step removes p + 1 points from the sample, and 
there may be only one outlier among them. 

The well-known M-estimators that are great robust estimators in 
the one-dimension location problems also have low breakdown points for 
higher p, see "Robust Statistics" by Huber (1981, Wiley) for more details. 

Since 1982, several high breakdown point estimators have been pro- . 
posed. Rousseeuw's minimum volume ellipsoid estimator (MVE) is the 
center of the minimal volume ellipsoid covering at le~t half of the data 
points. For a typical p-dimensional sample X 0

, the breakdown point of 
the MVE equals([~]- p + 1)/n which approaches 1/2 as n-+ oo. 

The MVE is not locally stable and converge quite slowly to the true 
mean vector of an elliptically symmetric distribution (if such a model holds 
exactly). But as a highly reliable "center" estimator, it can often be used 
as a starting point for diagnostics. Locally stable and faster converging 
estimator for multivariate location-scatter estimators are also available. 

Let K : R+ -+ [0, 1] be a nondecreasing left continuous function with 

(1) K(O) = 1 and K(u) continuous at u = 0 
(2) K(u) > 0 for 0 ~ u < c ,but K(u) = 0 for u > c for some c > 0. 
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For an elliptically symmetric distribution F((x- u)T E- 1 (x-u)) with 
mean vector JJ. and ~catter matrix E, an S-estimator (P.n, En) is a solution 
( a•, A •) of the following minimization problem. 

minimize det IAI subject to 

..!:. t K ( ( x, - a) T A- 1 
( x, - a)) ~ 1 - € 

n 
i= 1 

over all a E RP and p x p positive definite matrix A, where 1 - £ = 
E[K((X::::. JJ.)T E- 1 (X- JJ.))] under the model. Such an S-estimator has 
been shown to have the following properties : 

(i) For n(1- £) ~ p + 1, there is at least one solution (a* ,A*) with 
A*> 0. 

(ii) Under the model, both P.n and En converge to JJ. and E at the rate 
of n-} (with some regularity conditions). 

(iii) The breakdown point of the S-estimator is £, which can be chosen 
between 0 and ([i]- p + 1)/n. 

(iv) The smooth S-estimator is also locally stable. 

However, the S-estimator is computationally difficult. Finally, we 
should point out that a robust location-scatter estimator is itself a key to 
various robust techniques for multivariate data. For a further understand­
ing of robust statistics, see "Robust statistics, The Approach Based on 
Influence Function" by Hampel, Rousseeuw, Ronchetti and Stahel (1986, 
John Wiley & Sons). 
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