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In [21], Frank Plumpton Ramsey proved what has turned out to be 
a remarkable and important theorem which is now known as Ramsey's 
theorem. This result is a generalization of the pigeonhole principle and 
can now be seen as part of a family of theorems of the same flavour. These 
Ramsey-type theorems all have the common feature that they assert, in 
some precise combinatorial way, that if we deal with large enough sets 
of numhers, there will be some well behaved fragment in the set. In 
Harrington's words, Ramsey-type theorems assert that complete chaos is 
impossible. 

Ramsey-type theorems have turned out to be very important in a 
number of branches of mathematics. In this paper we shall survey a num­
ber of basic Ramsey-type theorems, and we will then look at a selection 
of applications of Ramsey-type theorems and Ramsey-type ideas. 

In the applications we will concentrate on graph theory, logic and 
complexity theory. Proofs will mostly not be given in detail, but it is 
hoped that the reader will gain some appreciation of the usefulness and 
importance of the beautiful area of asymptotic combinatorics. 

* The subject of this paper was presented as a seminar at the National University of Singapore 
in March 1989. The author wishes to thank Carl Jockusch for discussions concerning Shelah's 
proof of the Hales-Jewett Theorem. 
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§2. Basic Ramsey theory 

Our starting point is the pigeonhole principle. This is the obvious 
statement that one cannot put more than n pigeons into n pigeonholes 
without at least two sharing. Whilst its statement is remarkably obvious, 
this principle has a number of very delicate and subtle applicatjons. Here 
the reader is referred to, for example, [28, chapter III]. 

2.1 Example. Imagine numbers 1, ... , 36 are distributed randomly (but 
without repetition) in the 36 sectors of a roulette wheel. Let the contents 
of the sectors be a 1 , ••• , as6 • We claim that there are four consecutive 
sectors a,, ai+ 1 , ai+ 2 , ai+ s (where for example if i + 1 = 36 then ai+ 2 

denotes ad such that a, + ai+ 1 + ai+ 2 + a,+s ~ 74. 
To prove this first recall that 1 + 2 + · · · + 36 = 18 · 37 = 666. Now 

consider the sums: 

a1 + a2 + as + · · · + ass + as6 = 666 

~ + as + a4 + · · · + as6 + a1 666 

as + a. + as + · · · + a1 + ~ 666 

a. + as + a6 + · · · + a2 + as 666 

81 + 82 + 8s + · · · + 8ss + 8s6 = 2664 

Now there are 36 sums of consecutive sectors, whose sum is 2664. That is 
there are 2664 pigeons who must be packed into 36 pigeonholes. It follows 
that at least one hole must have ~ 2664/36 = 74 pigeons. Hence by the 
pigeonhole principle at least one sum 8k has 8k ~ 74. D 

Another way to think of the pigeonhole principle is via colouring. The 
principle asserts that if I have n colours and more than n pigeons then 
two pigeons will be coloured the same. 

Let A be a set. An m-subset of A is a subset with m-elements. 
The simplest form of Ramsey's theorem is concerned with colouring 2-sets 
rather than single elements. The simplest statement of Ramsey's theorem 
is then 

2.2. Theorem (Ramsey [21]). There is a number n so large that if I 
colour each of the 2-su bsets of { 1, ... , n} in red or blue then there is a 
subset B ~ A such that all the 2-subsets of B have the same colour. 
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The statement above appears rather complex, but is best thought of 
as the "friend principle". Suppose in a party we will colour a pair of people 
red if they are friends and blue if they are non-friends. Then (2.2) asserts 
(2.3) below. 

2.3. Given k there is ann so large that in any party of at least n people 
there is either a set of k mutual friends or k mutual non-friends. 

Of course we cannot know which option will pertain since for some 
parties all people might be friends and for others all might be enemies! 

The statements above are rather unwieldy, and so we shall introduce 
some notation to aid our discussion. We will write 

if n has the property that it is so large that in any party of n people there 
are either k1 mutual friends or k2 mutual non-friends. A more general 
statement is 

We will now describe how to prove (2.4) which implies (2.2) by setting 
k = k1 = k2 • The proof of (2.4) uses the same idea as a much easier and 
familiar result: 

2~5. If A is any set with n elements then P(A), the set of subsets of A, 
has 2n elements. 

We will discuss the proof of (2.5) first. The proof we give uses an 
important combinatorial idea: a bijective proof. We will proceed by in­
duction. Inn= 0 then A= 0 and P(A) = {0}, which has 2° = 1 element. 

For an induction suppose the result for any set with n = k elements. 
Suppose A has k + 1 elements. We distinguish one element x of A. Then 
the subsets of A can be naturally divided into two types: 

I~ = {B B ~ A and x E B}, 

and 

H~ = {B : B ~A and x ft. B}. 

That is those that contain x and those that don't. 
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There is a bijection between I% and IIs .in the sense that to get a set 
in I% we take a unique set in II% and add x. Thus both I% and IIs have the 
same size. Note that IIs is the collection of subsets of A- {x}. So, by the 
induction hypothesis, IIs has 2k elements. Hence P(A) has 2k +2k = 2k+l 
elements. 0 

To prove (2.4) we will again proceed by induction except that we 
will use a slightly trickier form of induction. Since we are dealing with a 
statement involving k1 and k2 we will proceed by induction on k1 and k2. 
Clearly k2 ---+ (2, k2) and k1 ---+ (k1 , 2). For example, in any set of k2 people 
they are either all friends or two of them are not, hence k2 ---+ (2, k2 ). 

Suppose that n 1 ---+ (k1 - 1, k2) and n2 ---+ (k1 , k2 - 1) we claim that 
n 1 + n2 = n ---+ (k1 , k2). The result will then follow by induction. Again 
we will use the "divide and conquer" technique. Take any element x of 
{1, ... , n}. Let 

Is = { y : { x, y} is red} , 

IIs = {y: {x,y} is not red}. 

Now as n 1 + n2 = nand JI% I+ JII,. I+ 1 = · n, where JBJ denotes the number 
of elements in B. So by the pigeonhole principle it follows that either 
lis I 2:: n1 or JII,. I 2:: n2. 

If JI,.J2:: n 1 then as n1 ---+ (k1 -1,k2 ), there is a subset B of I,. such 
that either JBJ = k2 and all the 2-subsets of Bare blue or JBI = k1 -1 and 
all the 2-subsets of B are red. In the first case we have the desired result. 
In the second JB U {x}J = k1 and by definition of Is, all the 2-subsets of 
B U { x} are red. The case for IIs is essentially the same. 0 

There is nothing special here about 2-subsets or 2-colourings. There 
is a more general Ramsey's theorem concerning r-colourings of m-subsets. 
To facilitate discussion of this, we shall define [A]m to be the m-subsets 
of A. A subset B of A is called homogeneous for a particular r-colouring 
of A if [B]m is monochromatic. 

The most general form of Ramsef's theorem asserts that given k, r, 
and m there is an n so large that for any r-colouring of [ { 1, ... 'n} lm there 
is a homogeneous set of size k. This is written as 

2.6. n-=-+ (k)~. 

2.7. Ramsey's Theorem. (Vm,r,k)(3n)(n---+ (k)~). 
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There are many proofs of (2.7). Ramsey's original proof proceeds by 
an induction similar to the proof we gave of (2.4), but much more intricate. 
The reader should see [13] if he or she is interested in more details. 

The original application of Ramsey's theorem (by Ramsey) was to a 
problem in formal logic. (For those readers who are familiar with logic, 
he used (2.7) to prove a sort of finite Lowenheim-Skolein Theorem.) This 
was essentially the state of Ramsey theory until the theorem (2. 7) was 
rediscovered by P. Erdos and G. Szekeres [7]. 

Esther Szekeres observed that given 5 points in the plane with no 
three collinear, some 4 form a convex quadrilateral. Here a polygon is 
called convex if all of its internal angles are less than 180°. For example 
in Figure 1, polygon A is convex yet B is not as the angle at X is greater 
than 180°. 

A B 

Figure 1 

A natural question is to generalize this result to more than 4 points. 
Erdos and Szekeres rediscovered Ramsey's theorem to settle this question 
and showed that for any k there is ann so large that in any set of n points 
in the plane with no 3 collinear there is convex k-gon. 

The original proof of this result used 2-colourings of 4-sets. We will 
not give this argument but give a simpler one due to Tarsy. At the time 
Tarsy was a student and apparently had failed to study this question for 
his exam. During the exam the question above was set. Tarsy got the 
question right, but with the following completely new proof. (I'rri sure 
there is a moral here but ... .. ) Let n ---+ (kg . Number any n points in 
the plane arbitrarily 1, ... , n. Colour the 3-set {i,j, k} red if i < j < k 
and to get from i to j to k is clockwise, and blue if anticlockwise. Then 
the homogeneous set of size k must be convex. 

A nice open question here is due to Erdos and Szekeres. If we let 
n(k) denote the minimum number needed to guarantee a convex k-gon, 
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determine n(k). It is known that 

(
2k- 4) 2,.- 2 < n ( k) < k - 2 + 1. 

It is conjectured by Erdos, Szekeres and Klein that n(k) = 2,._ 2 + 1. 
Another nice application of Ramsey's theorem is the following. Sup­

pose n --+ (kg. Then if I have a sequence of n distinct numbers a 1 , ••• , 

a,., there is either an increasing subsequence of size k or a decreasing sub­
sequence of size k. To see this, colour {a,, a,-} red if i < i and a, < a,- and 
blue otherwise, and apply Ramsey's theorem. Again we have the theme 
that if n is large there is a well-behaved fragment. Here, however, optimal 
bounds are known. Using other pigeonhole type arguments, this result 
can be improved to say that in any sequence of n2 + 1 distinct numbers, 
there is a monotone subsequence of size n + 1 (Erdos-Szekeres [7]). (The 
bounds given by Ramsey's theorem are more like 2" rather than n 2 + 1). 
(This is also a consequence of Dilworth's theorem for readers familiar with 
that result). 

§3. Classical Ramsey-type theorems 

The last results of the las~ section suggest that Ramsey's theorem is 
not an isolated phenomenon. An easy generalization of Ramsey's theorem 
is to infinite sets. Thus if I colour them-subsets of IN in k colours, there is 
at least one infinite homogeneous set. A beautiful Ramsey-type theorem 
was given in 1927 by Vander Waerden solving a question of Schur (Van 
der Waerden [31]). 

3.1. Theorem. If I r-colour the positive integers then there are arbitrar­
ily large monochromatic arithmetical progressions. 

In particular, if I colour the integers into 2 colours red and blue and 
give you a k, then either there is a blue arithmetical progression of size k 
or a red one of size k. There is a finite form of (3.1) which is the following. 

3.2. Theorem. Given k and r, there is an n so large that if we r­
co}our the integers 1, ... , n then there is a monochromatic arithmetical 
progression of size at least k. 
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We denote the least such n by W(k, r). To give the reader some idea 
as to how Vander Waerden proved (3.2) we will follow [13] and the case 
k = 3 , r = 2. It is claimed that W(3, 2) ::; 325. We would first break 
[1, 325] into 65 blocks of length 5: 

[1, 325] = [1, 5] u [6, 10] u ... u [321, 325] 

=B1UB2U···UBos· 

As these numbers are 2-coloured there are 25 = 32 ways to 2-colour a 
block B,. By the pigeonhole principle there are at least 2 blocks B, and 
B; in the first 33 blocks of the same colour, say B 11 and B 26 • 

Consider B 11 = [51, 55]. Of the first 3 elements {51, 52, 53} at least 
two must have the same colour, say j and j +d. Note that j + 2d belongs 
to B11 since IB1 1 I = 5. If j, j + d, j + 2d all have the same colour, done. 
Otherwise, without loss of generality, j, j + d are red and j + 2d is blue. 
For example, we would have 51, 53, 54 red and 52, 55 blue. This means 
that in B 26 , 126, 128, 129 are red and 127, 130 are blue. But then we 
are done: consider B 41 • If 205(E B 41 ) is blue then 55, 130, 205 form a 
blue arithmetic progression and if 205 is red then 51, 128, 205 form a red 
arithmetic progression. We win no matter what the colour. 

The basic idea here is to focus on B, and B; with i < j ::; 33 and 
B,, B; with the same colouring. We then argue that amongst B,, B;, 
Bi+ 2 (j-i) we get the arithmetic progression by a process of elimination as 
~~. 0 

The ideas above can be generalized to give a proof of the full theorem. 
A nice account of how this theorem was discovered and how the general 
argument was found can be found in [32]. This is an excellent study 
for students of psychology of mathematical discovery. The reader might 
wonder what sorts of numbers the proof above gives for W(k, r). For 
example it gives 

W(3, 3) ::; 7(2 · 37 + 1)(2 · 37 ! 2
·
3

' + 1 l + 1). 

In general it gives astronomical bounds for W(k, r). How astronomical? 
Is it important if the bounds are astronomical? We will return to these 
questions in the next section. 

The reader may wonder if (3.1) can be improved to saying that there 
must be infinitely long arithmetical progressions of the same colour, rather 
than arbitrarily long (but finite) ones. The answer is no (exercise). 
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A powerful generalization of (3.1) was proved by Szemeredi. Sze­
meredi's theorem is called the density version of Vander Waerden's theo­
rem and asserts that for any k there is an n so large that for any r-colouring 
of { 1, ... , n} there is a monochromatic arithmetic progression of size at 
least k in the most common colour. More precisely we .say a set of natural 
numbers A has positive upper density if 

1
. lA n {1, ... , n}l 
1m sup > 0. 

n 

3.3. Theorem (Szemeredi [30]). If A has positive upper density, then A 
contains arbitrarily long arithmetic progressions. 

This result had quite a long history. It was conjectured in 1936 by 
Erdos and Turan. In 1952, using analytic number theory, Roth [23] proved 
that if A has positive upper density then A contains a 3-element arithmetic 
progression and later in 1969 E. Szemeredi [29] improved this to 4-element 
arithmetic progressions. It was not until 1974 that Szemeredi proved 3.3 
using very complex but elementary combinatorial arguments. Another 
proof of 3.3 was given in 1977 by Furstenberg using probabilistic methods 
- or rather, ergodic theory. 

Erdos has conjectured that if A is a set of positive integers and 

then A contains arbitrarily long arithmetic progressions. This general­
ization of Szemeredi's result appears very difficult, since, in particular it 
would solve the very old question of whether the primes contain arbitrarily 
long arithmetic progressions. Incidentally, Erdos has offered US$3,000 for 
solving the conjecture above. 

Vander Waerden's theorem was generalized in several ways. A cen­
tral generalization of this type is the Hales-Jewett theorem. This result is 
very important as it is a purely combinatorial one about finite sets of in­
tegers and has many applications, only one of which is Van der Waerden's 
theorem. In many ways the most difficult aspect of the Hales-Jewett theo­
rem is understanding its statement. The following method was suggested 
to the author by Carl Jockusch and is quite nice. · 

We let kn denote the set of all vectors (x1 , ••• , xk) with 0 ~ xi ~ n. 
This is sometimes called the k-dimensional n-cube. In some sense it is 
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rather like a vector space except that there are no operations and we only 
have integers from 0 to n. What then would he the analogues of a line, 
plane, etc., in this setting. For vector spaces a d-dimensional subspace 
is the set of solutions to a set of equations with d degrees of freedom. 
Exploring this analogue in the primitive situation here, what can equations 
look like? As there are no operations for variables x1 , ••• , xk equations 
can only say that 

3.4. x, =X; or x, =a for some constant a~ n. 

What then is the solution space for the equations of the form (3.4)? They 
can only he of the form x,, = x12 = x13 , xi! = xh = xh = · · · = X;p 

or Xm = a, etc. with "a" constant. Thus here "dimension" will denote 
the number of blocks of variables. A d-parameter subset of kn is a d­
dimensional subspace in the sense above. 

A !-parameter set is called a line. For example if n = 4 and k = 5, 
consider 

The line generated by the equations above is {(0, 3, 0, 1, 0), (1, 3, 1, 1, 1), 
(2,3,2,1,2), (3,3,3,1,3), (4,3,4,1,4)}. 

3.5. Theorem {Hales-Jewett [14]). Given n and c there exists k so large 
.that for any c-colouring of kn there is a monochromatic line. 

The Hales-Jewett theorem also has a natural extension to asserting 
for a given p there is a k with kn having a p-parameter subset. The case 
above is for p = 1. The Hales-Jewett theorem implies Vander Waerden's 
theorem as follows. 

3.6. Theorem (Hales-Jewett [14]). {3.5) implies {3.2). 

Proof. Given n and c where c is the number of colours and n is the desired 
length of the arithmetic progression, take k as in (3.5). Let R = nk + 1. 
Consider a c-colouring d of {1, ... , R}. We define a colouring don kn by 

By {3.5) we have a monochromatic line in kn. There are n points in 
such a line. We claim the image of this line under the induced map 
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above is the relevant arithmetic progression. Why? The line will count 
of a block of variables which vary from 0, ... , n and all other coordinates 
will be constant. (For example, for the line {(0, 1, 0, 3, 0), (1, 1, 1, 3, 1), 
(2, 1, 2, 3, 2), ... } we have 

-3 = (0 + 1 + 0 + 3 + 0)- (1 + 1 + 1 + 3 + 1) 

= (1 + 1 + 1 + 3 + 1)- (2 + 1 + 2 + 3 + 2) 
0 

The Hales-Jewett theorem has a number of important and interesting 
consequences in, for example, complexity theory, as well as asymptotic 
combinatorics. One example in combinatorics is Gallai's theorem [see 13] 
which is a sort of generalization of Van der Waerden's theorem to higher 
dimensions. An extension of (3.5) was conjectured by Rota for vector 
spaces over finite fields. This conjecture was finally verified by Graham, 
Leeb and Rothschild. 

3.'1. Theorem (Graham, Leeb, Rothschild [12]). Let F be a fixed finite 
field. For all r, t, k ;:::: 1 there exists an n so large that if the t-dimensional 
subspaces of pn are r-coloured then there exists a k-dimensional subspace 
all of whose t-dimensional subspaces have the same colour. 

A simplified proof of (3.7) was discovered by Spencer [27]. 
To finish this section, we remark that it is unknown if there is density 

version of the Hales-Jewett theorem as follows: 

Conjecture (L. Moser). For all t ;:::: 2 and f .> 0 there exists N = N(t, f) 
such that if n ;:::: N and B ~ tn has at least dn elements, then B cqntains 
a line. 

§4. Bounds and applications to logic and 
graph theory: unprovable theorems 

In this section we will look at the bounds we get for the earlier results 
and some further Ramsey-type results. 

A nice place to start here is with Godel's incompleteness theorem. 
This is one of the great theorems of mathematics and proves that mathe­
matics can never be mechanized. Without the language of logic this means 
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the following. By a system we mean a collection of axioms generated by a 
machine, together with a set of deduction rules. A proof is then a finite or­
dered set of statements each of which is either an axiom or a consequence 
of earlier lines by the deduction rules. Godel's incompleteness theorem 
states roughly that for any system rich enough to capture a reasonable 
fragment of arithmE;tic, there is always a statement true of the system 
(and statable within the system) but not provable within the system. 

This beautiful and powerful theorem destroyed forever the hopes of 
Hilbert's programme, which attempted to reduce all of mathematics to the 
production of a machine that would eventually calculate all the theorems 
of mathematics. The one problem with Godel's theorem was that true 
but unprovable theorems were very uninteresting "mathematically" in the 
sense they were artificial statements mathematicians would not wish to 
prove in "ordinary" mathematics. In some sense the question became: 
Does Godel's theorem matter to "ordinary" mathematics? This has obvi­
ous implications to the aspirations of the designers of automated theorem 
provers, etc. In recent years, various Ramsey-type theorems have shown 
that the answer is "yes" and in turn this rich intersection of logic and com­
binatorics yielded the Robinson-Seymour theorem [22] in graph theory, as 
we will now see. 

The breakthrough came from the work of Paris and Harrington [19]. 
The system P A ( Peano Arithmetic) is a very primitive one that can be 
described as "finite combinatorics". The axioms are not all that impor­
tant, but express remarkable facts such as "0 exists", "if X exists SO does 
x + 1", "x + y = y + x, xy = yx", etc., together with simple logical rules of 
deduction. Roughly speaking if tp can be proved in "finite combinatorics" 
then tp can be proved in PA. Godel's theorem applies to PA and hence 
there are tp in P A statements true of P A but not provable in P A. 

Paris-Harrington[19] gave a mathematical example of the incomplete­
ness of PA. To state the Paris-Harrington result, we will need a variation 
of the original Ramsey theorem. Define a set S to be relatively large if 
lSI > min(S). For example S = {31, 62, 78} is not relatively large as 
3 =lSI i- min(S) = 31. The notation 

n---:-+(k):." 

means that for any r-colouring of [ { 1, ... , n} ]m there is a relatively large 
homogeneo~ set of size k. 

Going back to our party analogy, the idea is that each person has a 
unique number ~ n. A person thinks a set is big if his number is less 
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than the size of the set. The Paris-Harrington (PH) variant of Ramsey's 
theorem is 

4.1. Theorem (Paris-Harrington). ('v'm, r, k)(3n)(n-+(k)~ ) . 
• 

That is for m = r = 2, in any party there is a set of k mutual friends 
or non-friends and furthermore somebody in this set thinks the set is big. 
The remarkable fact is that although Ramsey's theorem. is easily proven 
in PA, Paris and Harrington showed that (4.1) cannot be proven in PA. In 
other words, any proof of (4.1) essentially involves the use of infinite sets 
(this can be made precise). Indeed, the proof that (4.1) is true uses in an 
essential way the infinite Ramsey theorem {which, although not provable 
in P A is not statable in P A either). 

How should we prove that {4.1) is not provable in PA? Originally this 
was done using proof theoretic techniques from logic. Later it was realized 
that easier and more revealing proofs were possible by analyzing the lower 
bounds for then= n(m,r,k)'s of (4.1). 

We will now try to give a flavour of the proofs here. The Ackermann 
Hierarchy of functions is defined as follows. For any positive integer x, 

/ 1 {x) = 2x, 

fn+ 1 {x) = /~s) {x) 

where J<sl denotes the zth iterate of I (under composition). For example 
fdx) = 2x, l2 {x) = z2s, 

• 2 

a tower of height x. 

One can see the function grows explosively. This defines In (x) for all 
n = 1, 2, 3,... . With the use of set theory, it is possible to ex~end the 
finite integers by artificial constructs called adding ordinals beyend the 
finite ordinals (numbers). We add a symbol w = {0, 1, 2, ... }, together 
with its natural extensions w + 1, w + 2, ... , w + w, w + w + 1, . : . . If an • 
ordinal 1 is of the form {3 + 1 we say 1 is a successor ordinal, otherwise 
1 = u, <.., '1 and we say 1 is a limit ordinal. We can extend multiplication, 
addition, etc., to the ordinals. The ordinals we are interested in are those 
that can be put into a form like, for example, 
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where the exponentiation is finite. 
These ordinals {3 are called lhe ordinals below Eo. They have the 

property that there is countable set of ordinals /3[0], /3[1], ... such that 

{3 = ~im/3[i). 
tEw 

This allows one to extend the definition of the Ackerman Hierarchy to the 
Grzegorczyk Hierarchy of ordinals below Eo. We do this as follows: 

ldx) = x 

Ia+ t(x) = l!z) (x) and 

ltJ (x) = ltJI"'l (x) for {3 a limit ordinal. 

We then need only one result from logic. The one classical result from 
proof theory (due to Kreisel) we need is that if I is a function whose 
construction can be carried out in PA, then for some fJ < Eo, for all x, 
l(x) ~ 1., (x). 

Using a direct analysis of the size of growth of (the least) n(k, m, r) of 
(4.1), Ketonen and Solovay showed that if n(2"3m sr) = n(k, m, r), then 

4.2. Theorem (Ketonen and Solovay [15]). n grows faster than all of Ia 
for a< Eo. 

In fact they showed that n(x) grows at exactly the same speed as 
l(o (x). As a point of comparison the functions for the original Ramsey 
theorem is dominated by 14 (x). At this stage, the Ketonen-Solovay and 
Paris-Harrington results revealed an avalanche of mathematical results 
that were independent of PA, or indeed systems much stronger than PA. 
Indeed, it was recently discovered that a theorem from the 40's was already 
an example of the Godel phenomenon for PA. 

Let b be a positive integer ~ 2. Then any nonnegative integer n can 
be written uniquely as 

where k ~ 0, n 1 > n2 > · · · > n,. ~ 0 and 0 < c, < b. 
We can extend this by similarly writing the exponents n1 , ••• , n,., 

etc., yielding the complete base b representation of n. For example, for 
b = 2, following the presentation of Simpson [26], we have 

266 = 22 Hl + 22+l + 2. 
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Let R, ( n) be the integer that results from taking the complete base b 
representation of n and replacing each b by b + 1. Thus 

I+ 1 S 
~ (266) = 33 + 3 + 1 + 3. 

We define the Goodstein sequence of n by 

(n)o = n 

d 

For example 

(n)k+ 1 = { 
0
Rk+'l ((n)k) - 1 if (n}k > 0 

otherwise. 

(266)0 = 266 

(266h = 33 ~+
1 

+ 3S+ 1 + 2 

(266}<J = 44
H

1 
+44+! + 1 

(266)a = 55
&+

1 + 55
&+

1 

( 266). = 66 
6+ 

1 + 66 
• 5 + 65 

• 5 + ... + 6 . 5 + 5 

etc. 

4.3. Theorem (Goodstein[ll]). For all n there is a k such that (n}k = 
0. 

To prove (4.3), Goodstein associated with the sequence (n)i a corre­
sponding sequence m(i) of infinite ordinals below £0 such that m(i + 1) < 
m(i) for all i. The result then easily follows from the set-theoretic axiom 
that the (countable) ordinals are well-ordered (that is in particular ther~ 
are no infinite descending sequences of ordinals). Infinitary methods are. 
necessary as (4.4) below shows. 

4.4. Theorem (Kirby and Paris [16]). Goodstein's theorem is not prov­
able in PA. In fact k(n) grows as fast as /Eo (n). 

Until recently, all known proofs of Vander Waerden's theorems or the 
Hales-Jewett theorem also seemed to give very large bounds. Indeed care­
ful analysis of the proofs showed that the witnessing functions eventually 
exceeded /, for all 11 < £0 • Therefore it seemed possible that perhaps these 
theorems too were examples of mathematical incompleteness in PA and 
the bounds really did grow that astronomically. Further work by Girard 
on Szemeredi's theorem also suggested this. It was therefore somewhat 
surprising that in 1988, Shelah proved: 
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4.5. Theorem (Shelah [24]). The Hales-Jewett, Van der Waerden and 
vector space Ramsey theorems are provable in PA. 

The proof is elementary, but a little involved to include here. In some 
ways it is much easier than the original proofs. It is not known if the finite 
version of Szemeredi's theorem is provable in PA. 

To finish this section we will examine one further outcome of this 
remarkable interaction of logic and combinatoric&. 

A finite tree will be taken to be a partially ordered set with a single 
root (the minimum) that forms a tree. The meet of nodes x andy on a 
tree Tis denoted by x 1\ y. We say that a tree T1 is embeddable into a tree 
T2 (written T1 --+ T2 ) if there is a 1-1 function I taking nodes to nodes 
such that x ~ y--+ l(x) ~ l(y) and l(x 1\ y) = l(x) 1\ l(y). For example, 
in the trees below T1 --+ T2 with I as indicated. 

q 

q 

z 

X 

Figure 2 

In [17] Kruskal showed that if T1 , T2 , ••• is any infinite sequence of 
finite trees, there exist 7i and T; with 7i --+ T,·. Harvey Friedman proved 
a finite form of Kruskal 's theorem: 

4.6. Theorem (Friedman see [26]). For any c there exists n = n(c) such 
that if T1 , ••• , T" is any set of finite trees with 11i I ~ c · i, for all i, then 
there exists k < j with T~c --+ T,·. 

Again (4.6) is provable equivalent to (the infinite form of) Kruskal's 
theorem, and in particular cannot be proven in P A. In fact, Friedman 
however showed that any proof of (4.6) needs uncountable sets, (not just 
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infinite sets) a much stronger result. The growth rate of the n(c) of (4.6) 
totally dwarfs /Eo! 

Actually, a variant of (4.6) we shall call (FG) (Friedmcm's finite form 
of Kruskal's theorem with the gap condition) is not provable even in sys­
tems where (4.6) is provable and any system strong enough to prove vir­
tually all theorems of classical analysis. The rate of growth of the witness 
function n(c) for (FG) is startling. Friedman also has various combinato­
rial principles statable in PA whose truth or falsity is actually equivalent 
to exotic set-theoretic assumptions such as the existence of "n-Mahlo car­
dinals". 

This remarkable interaction turned out to have spinoffs in combina­
torics too. One is the following. 

Let G be a finite graph. A minor of G· is any graph obtained by 
deleting and contracting edges of G. In a long series of papers, Robertson 
and Seymour have shown that given any infinite set G1 , G2 , ••• of finite 
graphs, then there is i < j with Gi a minor of G;. A beautiful consequence 
of this result is a solution to Wagner's conjecture: 

For any 2-manifold M there are only finitely many finite graphs not 
embeddable into M and are minimal with this property. 

This result is a generalization of Kuratowski's theorem that a graph 
is planar if and only if it does not have K6 or K3 , 3 as a minor. A crucial 
ingredient of the proof of the Robertson-Seymour theorem is the use CJ.f 
(FG). Friedman, Robertson and Seymour [9] have shown in fact that the 
Robertson-Seymour theorem is equivalent to (FG). 

We refer the reader to Simpson [25] for an 'excellent account of ·this 
exciting area. 

§5. Complexity Theory 

In this section we will very briefly discuss some fascinating recent de­
velopments which have arisen from the use of Ramsey-type theorems in 
complexity theory. A fundamental problem which confronts us in complex­
ity is to try to give tight lower bounds for algorithms for various processes. 
In general, it is often easy to work out a lower bound for a specific algo­
rithm (e.g. via generating functions and recurrence relations). The real 
difficulty is to give a lower bound for a problem and hence anu possible 
algorithm to solve it. 
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A classic example of this is the Hamilton circuit problem: Given 
a graph G decide if there is a circuit through the vertices that passes 
through each vertex exactly once. This is an example of what is called 
an NP-complete problem. There are many important "real life" examples 
of such problems. It can be shown that if we could solve one of these 
problems fast, for example in polynomial time (relative to the size of the 
graph), then we could solve all of them fast. 

Unfortunately, we strongly suspect that we cannot solve any of this 
list of problems fast, and any known algorithm to solve them takes expo­
nential time. In fact the best algorithms are not much better than trial 
and error. However, it may be that we are not smart enough. Maybe 
there is a fast algorithm and we have not yet found it. We would there­
fore like to prove that we cannot solve, for example, the Hamilton circuit 
problem in polynomial time. Our state of knowledge of such separation 
results (i.e., separating one complexity class from another) is appalling. 
It is only recently that we have been able to prove nonlinear bounds for 
various problems like the Hamilton circuit problem. 
• Many of these recent weak separation results uses delicate Ramsey­
type arguments. The reason Ramsey theory seems to apply is as follows. 
Suppose we have a process P we feel takes a long time. Suppose further 
we feel that for P to be performed, any algorithm must at some stage 
implement a procedure Q (or one of a set of procedures) that we know 
takes a long time. The use of Ramsey-type arguments will be to show 
that to perform P faithfully we must perform Q somewhere. 

We will content ourselves with one ·example and refer the reader to 
[2, 4, 6, 18, 21] for further examples. The example is due to Alon and 
Maass[1]. 

For a sequence M = x1 ••• Xm of length m with x, E {1, 2, ... , n} = N 
we shall say that an interval x, xi+ 1 ••• xi+; is a link between disjoint sets 
SandT~ N if 

(i) xi+ 1 , ••• , Xa+;- 1 ¢ S U T but 
(ii) (x, E S and Xa+; E T) or (x, E T and Xa+; E S). 

We shall say that M is a meander if for any two disjQint sets S, T ~ N 
with lSI = ITI there are in Mat least lSI links between S and T. More 
generally, if g : N -+ m.+ we call a sequence M a g-meander if between 
any two disjoint S, T ~ N with lSI . ITI, there are at least g(ISI) links 
between S and T. H g is the identity, a g-meander is a meander. 

Intuitively, a meander is a sequence of integers that is rather random 
and wanders back and forth a great deal. 
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Let X = x1 ••• Xr be a sequence of integers from a set N. For an 
ordered pair of distinct elements (a, b) of N define the order tJipe vutor 
V (a, b) = V. (a, b) as the vector obtained from x by replacing each oc­
currence of a by 0 and each occurrence of b by 1 and omitting all other 
numbers in x. Alon and Maass established the following Ramsey-theoretic 
result which is in the spirit of Hales-Jewett theorem. 

5.1. Theorem (Alon and Maass[1]). Let X = x1 ••• Xr be a sequence 
in which each a E N appear exactly k times (so r = nk). Suppose that 
N1 U N2 is a partition of N. Then there exists S ~ N1 and T ~ N2 with 
lSI ~ INll/22"'- 1 and ITI ~ IN21/22"'- 1 such that the set of all order type 
vectors {V. (s, t) : s E S, t E T} contains only one element. 

The proof of Theorem 5.1 is not difficult, and is by an induction 
similar in spirit to our proof of Ramsey's theorem in §3. 

Using 5.1 it is not too difficult to obtain estimates on the sizes of 
g-meanders. For example Alon and Maass show that if g(x) dominates 
xlogx asymptotically, then the minimum length of a g-meander (L11 (n)) 
on {1, ... , n} dominates n log n. Furthermore if g(x) --+ oo then L 11 (n) is 
superlinear in n. 

Alon and Maass apply this work on g-meanders to what are called "stl­
perconcentrators" [20] and the related notion of lower bounds for branching 
programmes which we now examine. 

A branching programme is a directed acyclic graph with a special ver~ 
tex S (start) that has no ingoing edges and other special vertices called ter-. 
minal vertices or sinks. A branching programme will compute a Boolean 
function on x1 , ••• , Xn as follows. All nonsink vertices are labeled by a 
variable x, and all sinks by 0 or 1. Each nonsink vertex has two children 
("fan-out 2"). These are labeled 0 or 1. Each assignment b of vaJues to 
x1 , ••• , Xn defines a unique computation path through the programme. A 
programme computes f if for all assignments b1 , ••• , bn, f (b1 , ••• , bn) is 
the label of the sink at the end of the path. 

The width of programme is the maximum number of nodes on a level 
( = nodes of the same distance from S) and the length of a programme is 
the length of the longest computation path. 

Clearly branching programmes provide a good and natural model of 
computation, and have attracted a great deal of attention. It is of great 
interest to obtain lower bounds for the time needed for various types of 
branching programmes to compute functions. 
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In particular, one open question from Borodin and Cook [2] is to 
find polynomial time computable functions f that cannot be computed 
in a linear length, polynomial width (= linear time, logarithmic space) 
branching programme. 

This question is still open, but Alon and Maass solve the Borodin­
Cook problem for input oblivious programmes. Here a programme is input 
oblivious if all non-sink vertices of the same distance from S have the same 
label. Alon and Maass use g-meanders to construct a number of functions 
that cannot be so computed. The detailed results are a little complicated 
to state but the basic idea is clear enough. H the width of the programme 
is constrained we would like to argue that the length m of the programme 
is great. To do this we show that constrained width allows us to construct 
a meander-like sequence of length m. Once we show that this can be done, 
Ramsey-theoretic results like 5.1 will show that m is large. As an example, 
by this technique Alon and Maass show 

5.2. Theorem (Alon and Maass[1]). LetT,.= T(x1 , ... ,xr) be a Bool­
ean function of n variables such that T,. ( x1 , ••• , Xn) = 1 if and only if xi ~ 
k. Suppose ~ > o > 0. Then any input oblivious branching programme 
of width w that computes T,. for some k with n6 ~ k ~ n - n6 has length 
at least of the order of on log n/ log w. 

We believe lower bound arguments await the development of the ap­
propriate asymptotic combinatorics. 
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