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We shall be concerned with the set X of functions ¢ defined on the
non-negative integers Zs, and with values in Z. The ring structure on
7ZL enables us to make X into a ring:

(¢ +9)(n) = ¢(n) +4(n) and (¢9)(n) = ¢(n)¥(n);

the constant function with value 1 is the identity of X .

Such functions arise in every part of mathematics. Their importance
stems from the fact that if a given situation gives rise to such a function,
then its properties often yield structural information about the original
mathematical situation.

Let me pick three examples and since I am an algebraist they are all

drawn from algebra.
(1) Let R be a commutative noetherian local ring. “Noetherian” means
that R satisfies the maximal condition on ideals and “local” means that
R has exactly one maximal ideal, call it I. For example, if p is a prime
number, the subring 7, of the rational numbers @ consisting of all ratios
of integers a/b, with b prime to p, is such a ring, the maximal ideal being
PLy).

By the maximality of I, R/I = K is a field and by the noetherian
property, each I" is finitely generated as an ideal. Hence each I" /I"*! is
a finite dimensional vector space over K. Then

r > dimg I" /I

is a function in X.

*  Written version of invited lecture delivered to the Singapore Mathematical Society and the
Department of Mathematics, National University of Singapore, on 3 April 1989. Professor Gru-
enberg was visiting the National University of Singapore as External Examiner in Mathematics.
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(2) Let G be a group with a given finite set of generators S. Then every
element g in G can be expressed in the form

Lz €n
g-—sl ...sn y

where s; € S and ¢, = +1. We call n the length of this expression. Of
course, our element ¢ may have many different expressions, so n is not
determined by g. For each n € Z5,, let G(n) be the set of all g in G that
have an expression of length < n. (G(0) = {1}.) Since S is finite, G(n) is
finite and we write /(n) for the cardinality of G(n). Then [ is a function
in X.

(3) Let K be a field, G a finite group and A a finitely generated KG-
module. We choose a finitely generated projective resolution of A over
KG: :

v Py =P P By 2 A— 0.

This means that each P; is a finitely generated projective KG-module (a
projective module is a direct summand of a free module) and the displayed
sequence is an exact sequence of modules (meaning that the image of each
incoming arrow is the kernel of the outgoing arrow).

Since G is finite, every finitely generated K G-module is a finite di-
mensional vector space over K. Hence

animK Pn
is a function in X.

We shall reexamine all these examples later. But now we turn to
general observations about our ring X. The simplest functions that live
in X are the polynomially defined ones. We say ¢ is polynomsially defined
if there is a polynomial f(X) € Q[X] so that ¢(r) = f(n) for all n > 0.
Note that f(X) need not have integer coefficients: for example, with k
any positive integer,

(2() _X(Xx-1) --,;'(X— k+1)

takes only integral values when X is made integral. If P denotes the set
of all polynomially defined functions, then P is a subring of X and we
now claim that every function in P can be constructed from the above
binomial polynomials:




Proposition 1. The polynomial (§) for k > 0 (here (%) means 1) form
a Q-basis of Q[X]|, and they additively generate (a group isomorphic to)
P.

Proof. The Q-basis property is immediate by an induction on degree if

we note that I’ s

where °g (the degree of g) is strictly smaller than k.
We prove the second assertion also by induction on degree. So let
¢ in P be given by the polynomial f(X) and (using the first part of the

Proposition) suppose
4 X
1= Ya(f),

k=0
where a; € Q. We need to show each a, is an integer.
For any polynomial g(X), let
6g9(X) = g(X +1) — g(X).
Then 6(),:) = k’fl) and so
. X
§f(X) = :
0= e figt 1)

Now 6 f has smaller degree than f and is still integral valued at all n > 0.

So by induction each of a,, ..., a, is in Z. Since
. X
a, = f(X) ——’;ak(k)

and the right hand side takes only integral values, so a, is also in ZZ. O

Polynomially defined functions occur rarely. A slight generalization
leads to functions that appear frequently. Let ¢ be a positive integer.
We say ¢ in X is polynomial on residue classes mod ¢ (PORC mod g) if
there exist polynomials f, (X), ..., fy—1(X) in Q[X] such that, for every
0<r<gand n€Z,

¢(ng +r) = £, (n).
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Of course, every integer can be written in the form ng + r. Note also that
if ¢ € P, then ¢ is PORC mod 1.

We say two functions ¢, ¢ are ultimately equal if there exists an integer
N so that n > N implies ¢(n) = ¢(n) and we write ¢ ~ 1. The function
¢ is ultimately PORC mod ¢ if there exists a PORC mod ¢ function ¢ so
that ¢ ~ 1.

To every ¢ in X we may attach a formal power series

P(4,X) = T s(m)x".
This is often called the Poincaré series for ¢. Note that ¢ ~ @ if, and
only if,
P(¢,X) — P(¢, X) € Z[X].

The Poincaré series of PORC functions have a particularly nice form:

Proposition 2. The function ¢ is ultimately PORC mod q if, and only
if,

9(X)
G- X

where g(X) € Z[X] and t is a positive integer.

P(¢7X) =

Proof. Assume first that ¢ ~ ¢ with ¥ PORC mod ¢ and given by the
polynomials fo, ..., f,—1. It will suffice to show that P(1,X) has the
required form. Now

P($,X) = ). ¢(m)X™

m>0

=T ¥ wlng + )Xt

r=0n>0

=§ x5 1 (n)x™).

n>0

Hence it will suffice to show ) f,(n)X"? has the required form, for every
n>0
r.

By Proposition 1,

fr(X)=zd:ae()f),

=0




with each a; € Z and d = °f,. So we are reduced to proving that, for each
P (:.')X"" has the required form. We have

n>0

50 (-:) . (: e+ 1) nss +n—1)
En: (Z!J(rss—nli') '
(SrRELEY
Thus
GBS st )X @

n>0

Using also that (?) =0if n < 7, we deduce

(- (1

n>0 m2>0
X'
. (1= Xs)i+r?
as required.
Assume now conversely that
9(X)
P(¢,X) = ———.
@X) = T =0
By (1)
1 oekaeti €
B xn
(i )e
n>0

whence the coefficient function is PORC mod ¢ with polynomials

<X+t——l

¥ q ),0,0,"',0.
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If f(X) is a polynomial with integer coefficients of degree < g, say

f(X) = qgjl b X,

then

B (1 e

and so this is the Poincaré series of a function PORC mod ¢ with poly-
nomials b; (x+: 1) 0 < 7 < ¢g. Now write our given polynomial g(X)
as

9(X) = 2 a:(X)(1 - X*),

i20

where °g; < ¢. (This is really a finite sum.) Then

9(X)
{— X0~ +Z I_Xq)t :: (2)

The second term on the right hand side of (2) is PORC mod ¢, as we proved
above, and hence the left hand side is ultimately PORC mod gq. O

Note that the integer ¢ in Proposition 2 can be taken to be 1 + d,
where d = max{°fy,°f1,...,°f,—1}. This follows from our proof.

Functions that are ultimately PORC grow only polynomially. To be
precise, let us define ¢ to be of polynomial growth ¢ > 0 if there exists a
positive real number a and a positive integer N so that n > N implies
|#(n)| < an°~! and c is the smallest such integer.

Proposition 3. If ¢ is ultimately PORC mod gq, given by fo, ..., fi-1
and d is the maximum of the degrees of f,, ..., f,_1, then ¢ is of polyno-
mial growth d + 1.




Proof. Suppose ¢ becomes PORC modgat N. If n > N and n = kg +r,
then

OIEIACTEI o)

e A
where f,(X) = > a; X*. If ) |a;| = A,, define a = max(4,,...,4,-,).
i=0 1=0
Then |¢(n)| < an® for all n > N.
Now assume |¢(n)| < an°~! for all n > N and let d be the degree of
f.. Then

|7 (k)| = |¢(kg + )| < a(kq +r)*"*

for all £k > K say. If g(X) is the polynomial a(¢X +r)°~*', then °g = ¢c—1
and |f, (k)| < g(k) for all k > K. This implies °f, < °g, i.e.,d < ¢—1. O

The converse of Proposition 3 is false. For example, let

_Jn if nis not a prime
¢(n)—{0 if n is a prime.

Then ¢(n) < n? ! so that ¢ has polynomial growth 2. But if ¢ were
PORC mod g above, say, N with polynomials f,, ..., f,—, then gk+r > N
implies

f- (k) = ¢(gk + 1)
and the right hand side is 0 whenever gk + r is a prime. By Dirichlet’s
famous theorem, Zq + r contains infinitely many primes and so f, (X) has
infinitely many roots, an impossibility.

Let us now return to our three examples.
(1) Recall that R has unique maximal ideal I and our function is ¢(n) =
dimg I™ /I"*'. The basic theorem here is that the associated Poincaré

__9(X)
P00 = 55
where, by cancellation, we may assume 1 — X is not a factor of g(X).
Then ¢ is the Krull dimension of the local ring R (this means that ¢ is
the supremum of the lengths of all chains of prime ideals in R). Thus ¢ is
ultimately polynomially defined and the polynomial in question is called
the Hilbert polynomial of R.

series is



If R=17Z,, P(¢,X) = 5 and the Hilbert polynomial is 1.

=X

A good account of this theory is in [1], Chapter 11.

(2) In this example G = (S) with S finite and I(n) is the number of
elements in the group G that can be written as an S-word of length < n.
An important theorem of Gromov [6] asserts that / has polynomial growth
if, and only if, G has a nilpotent subgroup of finite index. Very recently
Grunewald has shown that if / is of polynomial growth it need not be
_ultimately PORC. (There is a beautiful proof of Gromov’s theorem by
methods of non-standard analysis, due to van den Dries and Wilkie [4].)
Grunewald’s example is a type of Heisenberg group. Let H, (the k-th
Heisenberg group) be the group with generators z,, ..., Zx, Y1, - -+, Ys; 2
subject to the relations

[z, %] = 2 is central,
[zhyj]zl if 37&],
the z’s commute and the y’s commute.

Take S = {z;,...,Z4,¥1,.--,Yx }. Then H, is the free nilpotent group of
rank 2 and class 2 and here it is known that

9(X)

P(I,X) - m.

This was conjectured by R. Bodeker and proved independently by M.
Shapiro and B. Weber. However, Grunewald has proved that [ for H, and
S is not ultimately PORC, nor even rational.

(3) For our KG-module A we choose a projective resolution
b & 5 e b 2 e e Rt

with the property that for each ¢, the image of P, in P;_, contains no pro-
jective direct summand. Such a resolution always exists and is, in a sense,
the tightest resolution possible. It is also unique (to within isomorphism).
The claim now is that n — dimyg P, is ultimately PORC.
This result depends on two theorems:
(i) Extge (K, K) is a graded noetherian K-algebra (Evens [5]) and for
any KG-module M, Extg¢ (K, M) is a finitely generated graded mod-
ule over Extg (K, K);




(ii) if V is a finitely generated graded module over a graded commutative
noetherian K-algebra A, then n +— dimg V, is ultimately PORC.
This result is nowadays usually known as the Hilbert-Serre theorem.
A special case of it lies behind the theorem on local rings in example
(1). Cf [1].

Putting (i) and (ii) together shows the function
n — dimg Exty . (K, M)
is ultimately PORC, whence so is
n — dimg Exty . (A, B)
for any KG-modules A, B (because
Extgg (A, B) ~ Extgs (K, Homg (A, B))).
Now a relatively elementary argument shows

dimK P,,, = ETS dimK Ext';{G(A, S),
)

where S runs through all simple KG-modules and each r¢ € Z,,. The
required conclusion that n — dim P, is ultimately PORC follows because
the set of functions ultimately PORC is closed under addition (in fact, it
is a subring of X).

These ideas go back to Swan [8]. A good introduction to this material
is Carlson’s little book [3].

In preparing the written version of this lecture I have been helped by
a letter from Fritz Grunewald and a comment by Aidan Schofield.

In addition to the literature already cited, I should mention the com-
prehensive survey by Babenko [2] of growth functions in algebra and al-
gebraic topology.
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