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In this talk, we introduce the important concept of a group, mention
some equivalent sets of axioms for groups, and point out the relationship
between the individual axioms. We also mention briefly the definitions of
a ring and a field.

Definition 1. A binary operation on a non-empty set S is a rule which
associates to each ordered pair (a,b) of elements of S a unique element,
denoted by a % b, in S. The binary relation itself is often denoted by *. It
may also be considered as a mapping from S X S to S,i.e.,*:SXxS — S,
where (a,b) > a*b,a,b€ S.

Example 1. Ordinary addition and multiplication of real numbers are
binary operations on the set IR of real numbers. We write a + b, a - b
respectively. Ordinary division <+ is a binary relation on the set IR* of
non-zero real numbers. We write a < b.

Definition 2. A binary relation * on S is associative if for every a, b, ¢ in
S,
(a*b)*c=ax(bxc).

Example 2. The binary operations + and - on R (Example 1) are as-
sociative. The binary relation + on IR* (Example 1) is not associative
since

(1r=2)+3=

N |

Pz =kal(2 2-3).

| =

*  Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat-
ical Society for school teachers on 5 September 1988.
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Definition 3. A semi-group is a non-empty set S together with an asso-
ciative binary operation %, and is denoted by (S, *).

Example 3. The set of n X n matrices with entries from IR together with
matrix multiplication - is a semi-group. This is denoted by (M, (IR),-). In

particular
F—y a b .
s = {(* ) cabeden).
a b\ (ad ¥\ _(ad+b ab +bd
c d ¢ d) \eca'+de cb+dd )’

Definition 4. An element e of a semi-group is an tdentity element of S
if foralla€e S,
exa=a=atxe.

Example 4. Let (IR,+) be the semi-group under ordinary addition +.
Then O is an identity of R : 0 + a = @ = a + 0 for every a € R.

Example 5. Let (IR,-) be the semi-group under ordinary multiplication.
Then 1 is the identity: 1-a = a = a - 1 for every a € IR.

Definition 5. A monoid is a semi-group with an identity element.

Example 6. (M, (IR),-) is a monoid under matrix multiplication with
the n X n identity matrix as an identity element.

Definition 6. An element z of a monoid S is tnvertible if there is an
element z’ in S such that z’ *xz = e = £+ z', where e is an identity element
in S. Such an element z’ is called an tnverse of z.

Example 7. In the monoid (M, (IR),:), = is invertible if and only if
det z # 0.

Remarks. If a monoid S has an identity element, then it is unique. That
is, if e, ¢’ € S such that foralla € S,

exa=a=ax*e, grxg=a=ass,
then e = ¢'. For we have e =ex e’ = ¢'.
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If an element z of a monoid S is invertible, then z has a unique
inverse. That is, if z,, z, € S and

T ¥ pi= i@ =g wE], AT ==V,
then z, = z,. For we have
5 =nat=nr(zhg) =(z 2] 2T e, =25,
Thus we will simply say the identity (element) of S and the inverse of z.
Definition 7. A groupis a monoid G in which evéry element is invertible.

Example 8. The set of n X n matrices with entries from IR and non-zero
determinant is a group under matrix multiplication. This group is denoted
by GL, (IR) and called the general linear group of degree n over R.

Axioms of a group. A group is a non-empty set G with a binary oper-
ation x satisfying the following properties.

Axiom 1. (Associativity) The binary operation * is associative.
Axiom 2. (Identity) G has an identity element.
Axiom 3. (Inverse) Every element of G is invertible.

Independence of the group axioms. The above three axioms (1), (2),
(3) are independent of each other.

Example 9. (M, (IR),-) in Example 3 is an example of an algebraic sys-
tem satisfying Axioms (1), (2) but not (3).

Example 10. Let S = {a,b,c} be a set of 3 elements with a binary
operation * given by the multiplication table

* | a b c
a & b .o
b b '&.c
c c b a

For example, b ¢ = ¢, ¢ x b = b. The element a is the identity in S and
every element in S has an inverse: axa =b* b= c *c = a. But * is not
associative:

bx(cxb) =bxb=a,
(bxc)xb=c*xb=0b.
Hence (S, ) satisfies Axioms (2), (3) but not (1).
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Alternative axioms of a group. A group is a non-empty set G with a

binary operation * satisfying

Axiom 1. (Associativity) The binary operation * is associative.

Axiom 2'. (Left identity) G has a “left identity” ¢, such that ¢;*a = a

for all ¢ in G.

Axiom 3'. (Left inverse) Each element a in G has a “left inverse” g

such that a; * a = ¢,.

The axioms 2', 3' may be replaced by the following Axioms 2", 3".
Axiom 2". (Right identity) G has a “right identity” e, such that a *

e, = a for all a in G.

Axiom 3". (Right inverse) Each element a in G has a “right inverse”

a, such that a xa, = e,.

Theorem 1. Axioms 1, 2, 3 are equivalent to Axioms 1, 2', 3', and to

Axioms 1, 2", 3".

Proof. Clearly, Axioms 1, 2, 3 imply Axioms 1, 2, 3'. Conversely, assume

Axioms 1, 2', 3'. Let a be any element of G. From Axiom 3’, we have

(¢, a) xa, = ¢ % a, = q

(1)

Let b be a left inverse of a;, i.e., b * a; = ¢;. Multiplying (1) by b on the

left hand side, and using Axiom 1, we have

(b*xa)*(axaq) =0bx*a,
or
e *(axaq)=c¢,
by choice of b. Hence by Axiom 2',
axa =e.
Finally, we have
ax(a xa) =axe,
or
(a%a))*xa=axe,
or, by (2),
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e xa=ax*e. (3)

(2) and (3) show that e, is the identity of G and g, is the inverse of a.
We can similarly show that Axioms 1, 2, 3 are equivalent to Axioms
1,2", 3" O

Example 11. There is an algebraic system which is not a group but
which satisfies Axioms 1, 2’ and Axiom 3": For each element a € G, there
is an element a’ € G such that a * a’ = ¢;, where ¢, is a left identity of G.

Let S = {a, b} be a set of two elements with binary operation * given
by

a*a=a, axb=0b,

bxa=a, bxb=b.

It can be easily checked that * is associative. The element a is a left
identity of S. Moreover, the element a is a “right inverse” of both a and
b with respect to the left identity a, i.e., a x @ = a, b * a = a. However, S
has no right identity and hence (S, ¥) cannot be a group.

Example 12. (IR*, ) in Example 1 satisfies Axioms 2, 3’ but not Axiom
1. In fact, 1 is a right identity and every element a in IR" is its own inverse :
ag=-1=@a,a=a=1.

Theorem 2. Let G be a semi-group with binary operation *. Suppose
for any a,b in G, the equations a * £ = b and y * a = b have solutions with
z,y in G. Then (G, *) is a group.

Proof. Let a be any fixed element in G. Then the equation a * z = a has
a solution z = z, say : a x z, = a. We will show that b * z, = b for every
b in G. Let b be any element in G. Then the equation y *x @ = b has a
solution y = y, say. Hence

bxzo = (yo *a) *xzo =yo * (@ *xzo) =yo *xa=b.
In other words, z, is a right identity of G.
Also, for any b in G, the equation b * £ = z, has a solution z = ¥

say. That is, b has a “right inverse”. Hence (G, ) satisfies Axioms 1, 2",
3"and is a group by Theorem 1. O
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Example 13. Let S be a set consisting of at least 2 elements and define
a binary operation * on S as follows :

axb=2> for all a,b€ S.

Then the equation a * z = b has a solution in z, namely z = b, and (S, ¥)
is a semi-group but not a group.

Proof. Associativity of # follows from

(6'20) w620 ¢,

ax(bxc)=axc=c.
Hence S is a semi-group. Suppose S is a group. Let e be the identity and
let a be an element of S with a # e. (This is possible since S has at least

2 elements.) Then a * e = a, by Axiom 2, and a * e = ¢, by definition of *.
Hence a = e : a contradiction. So (S, *) cannot be a group. O

Note. In Example 13, it follows from the definition of # that the equation
y * a = b has no solution with y in S if a # b.

Theorem 3. Let G be a finite semi-group with binary operation x. Sup-
pose G satisfies the following cancellation laws.
(Left cancellation law). If a, z, y are in G such that a ¥ z = a % y, then
2. =25
(Right cancellation law). If a,z,y are in G such that z *x a = y * a, then
Z=3
Then (G, ) is a group.

Proof. We will show that for any given a, b in G, the equations a*xz = b
and y * a = b have solutions in G. Suppose G has exactly n elements :
Gair B 5050 5.8 3o
For a given a; in G, consider the following subset of G :
X={a; *a,,...,8,%a,}.

Now X has exactly n elements since a; * a; = @; * ¢, implies that a; = a;
by the left cancellation law. Hence X = G. Thus for any a; in G, there is
some a, in G such that a; * a, = a;.
Similarly, the right cancellation law implies that
G ={a, *xa;,...,a, xa;}

and hence y * a; = a; has a solution with y in G. Hence, by Theorem 2,
(G, #) is a group. O
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Example 14. Let S be the semi-group given in Example 13. Then S
satisfies the left cancellation law. For if a ¥ £ = a * y, then by definition of
*, we have z = y. However, S does not satisfy the right cancellation law
for the equation z * @ = y * a holds for all z,y € G. From Example 13,
(S, *) is not a group.

Example 15. If the condition of G being finite is removed from Theorem
3, then G need not be a group. Take G to be the set of positive integers

G=4L2 8 .0 ),

and let * be ordinary multiplication of integers. Then G is an infinite
semi-group satisfying the left and right cancellation laws but G is not a
group since every integer greater than 1 has no multiplicative inverse.

Notation. If G is a group with binary operation *, we often write
a-b=axb, orsimply, ab=a=xb.

We also write a* = a, and for n > 2, a® = a"~ ! - a. The inverse of a is
denoted by a™ !, and for n < —1, write m = —n, and a" = (a7 ')™. The
usual rules hold : For all integers m,n,

Definition 8. The order of an element a of a group G is the smallest
positive integer n for which a® = e, where e is the identity of G. If no
such integer exists, the element a is said to be of infinite order. The order
of a is denoted by o(a).

Example 16. The product of two elements of finite order can be of infi-
nite order. For if

a0 o s 5 e
G Ggorsy e Stidigisoe g Ji
= s
ab-(o _1>.

Thus o(a) = 2, o(b) = 2, but ab is of infinite order.

then

Theorem 4. Let a be an element of a group G. If a* = e, where e is the
identity of G, then o(a) divides k.

17



Proof. Let n = o(a), and write k = nq + r, where g,r are integers with
0 <r <n. Then
e =als=i{a")%dl & a%.

Since 0 < r < n and n is the smallest positive integer for which a" = e, it
follows that k£ = ngq. |

Example 17. Let p be a prime, and for n > 1, define C,- to be the
multiplicative group of complex p"-th roots of unity :

C,-={z€C:2* =1}

Let G= U C,~. Then G is an infinite group in which every element is
n=1
of finite order.
The above group G is called a quasi-cyclic group.
Definition 9. A group G is abelian if ab = ba for all a,b in G.

Example 18. The following groups are abelian.

(a) The group Z of integers under ordinary addition,

(b) The group Z, = {0,1,...,n — 1} under addition modulo n,

(c) The group IR of real numbers under ordinary addition,

(d) The group € of complex numbers under ordinary addition,

(e) The group of rotations in the zy-plane about the origin under com-
position of rotations.

Ifn> 1,‘the group GL, (IR) (see Example 8) is non-abelian.

Axioms of a ring. Let R be a non-empty set with two binary operations
+ and - (called addition and multiplication). R is a ring if it satisfies the
following axioms.

Axiom 1. R is an additive abelian group with respect to +.
Axiom 2. R is a multiplicative semi-group with respect to -.
Axiom 3. (Distributive laws). For all a, b, ¢ in R,
a:(b+¢) = (a-8) +(a-0),
(a+b)-c=(a-c)+(b-c).

We denote the ring by (R, +,-). The identity of the additive group of
R is called the zero element of R and is denoted by 0.
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Example 19. The following are rings with the usual binary operations.

(a)
(b)
(c)
(4)
(e)

(f)

(g}

(=¥

0.

7L : the ring of integers,

Q : the ring of rational numbers,

IR : the ring of real numbers,

C : the ring of complex numbers,

R|z] : the ring of polynomials in the variable z with coefficients from
aring R,

M, (R) : the ring of n X n matrices with entries from a ring R.

In (f), two non-zero elements of M, (R) may have a product equal to

Axioms of a field. Let R be a non-empty set with two binary operations
+ and - (called addition and multiplication). R is a field if it satisfies the
following axioms.

Axiom 1. R is an additive abelian group with respect to +.

Axiom 2. R — {0}, where 0 is the identity element with respect to
+, is a multiplicative abelian group with respect to -.

Axiom 3. (Distributive laws). For all a,b,c in R,
a-(b+c)=(a-b)+(a-c),
(@+d)-c=(a-c)+ (b-c).

A field is a ring (R, +,-) in which (R — {0}, -) is an abelian group.

Example 20. The following are fields with the usual binary operations.

(2)
(b)
(c)

Q : the field of rational numbers,
IR : the field of real numbers,
C : the field of complex numbers,

Example 21. Let p be a prime, and let

Z, = {0,1,...,p—1}.

Define ® and ® in 7, as follows :

z @ y = remainder of the ordinary sum z + y when divided by p,
z ® y = remainder of the ordinary product zy when divided by p.

Then 7, is a field of p elements.
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Note. A finite field must contain exactly p” elements where p is a prime
and n is a positive integer. Finite fields are called Galots fields, named
after Evariste Galois (1811-1832) who first introduced them in his ground-
breaking work on solubility of equations. :

Finite fields have some recent applications to coding theory and cryp-
tography. With the availability of fast-speed computations, these applica-
tions are of more than theoretical interest.
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