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In this talk, we introduce the important concept of a group, mention 
some equivalent sets of axioms for groups, and point out the relationship 
between the individual axioms. We also mention briefly the definitions of 
a ring and a field. 

Definition 1. A binary operation on a non-empty set S is a rule which 
associates to each ordered pair (a, b) of elements of S a unique element, 
denoted by a* b, in S. The binary relation itself is often denoted by *· It 
may also be considered as a mapping from S x S to S, i.e., * : S X S ~ S, 
where (a, b) ~a* b, a, bE S. 

Example 1. Ordinary addition and multiplication of real numbers are 
binary operations on the set IR of real numbers. We write a+ b, a· b 
respectively. Ordinary division -;- is a binary relation on the set IR* of 
non-zero real numbers. We write a -;- b. 

Definition 2. A binary relation * on S is associative if for every a, b, c in 
s, 

(a* b) * c =a* (b *c). 

Example 2. The binary operations + and · on IR (Example 1) are as­
sociative. The binary relation -;- on IR* (Example 1) is not associative 
smce 

1 3 
(1 ~ 2) ~ 3 = - _J_ - = 1 ~ (2 ~ 3). • • 6 I 2 • • 

* Talk given at the Workshop on Algebraic Structures organized by the Singapore Mathemat-
ical Society for school teachers on 5 September 1988. 
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Definition 3. A semi-group is a non-€mpty set S together with an asso­
ciative binary operation *, and is denoted by ( S, *). 

Example 3. The set of n x n matrices with entries from 1R together with 
matrix multiplication· is a semi-group. This is denoted by (Mn (1R), ·). In 
particu1ar 

( 
a b ) . ( a' b' ) = ( aa' + be' 
e d e' d' ea' + de' 

ab' + bd') 
eb' + dd' · 

Definition 4. An element e of a semi-group is an identity element of S 
if for all a E S, 

e *a= a= a* e. 

Example 4. Let (1R, +) be the semi-group under ordinary addition +. 
Then 0 is an identity of 1R : 0 + a = a = a + 0 for every a E 1R. 

Example 5. Let (1R, ·) be the semi-group under ordinary multiplication. 
Then 1 is the identity: 1 · a = a = a · 1 for every a E 1R. 

Definition 5. A monoid is a semi-group with an identity element. 

Example 6. (Mn (1R), ·) is a monoid under matrix multiplication with 
the n X n identity matrix as an identity element. 

Definition 6. An element x of a monoid S is invertible if there is an 
element x' inS such that x' * x = e = x * x', where e is an identity element 
in S. Such an element x' is called an inverse of x. 

Example 7. In the monoid (Mn (1R), ·), x is invertible if and only if 
detx -:j: 0. 

Remarks. If a monoid S has an identity element, then it is unique. That 
is, if e, e' E S such that for all a E S, 

e *a= a= a* e, e' * a = a = a * e', 

then e = e'. For we have e = e * e' = e'. 
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H an element x of a monoid S is invertible, then x has a unique 
inverse. That is, if x1 , x2 E S and 

x 1 * x = e = x * x 1 , 

then x1 = x2 • For we have 

Thus we will simply say the identity (element) of S and the inverse of x. 

Definition 7. A group is a monoid G in which every element is invertible. 

Example 8. The set of n X n matrices with entries from m. and non-zero 
determinant is a group und~r matrix multiplication. This group is denoted 
by G L,. (m.) and called the general linear group of degree n over m.. 

Axioms of a group. A group is a non-empty set G with a binary oper­
ation * satisfying the following properties. 

Axiom 1. (Associativity) The binary operation * is associative. 

Axiom 2. (Identity) G has an identity element. 

Axiom 3. (Inverse) Every element of G is invertible. 

Independence of the group axioms. The above three axioms (1), (2), 
( 3) are independent of each other. 

Example 9. (M,. (m.), ·) in Example 3 is an example of an algebraic sys­
tem satisfying Axioms (1), (2) but not (3). 

Example 10. Let S = {a, b, c} be a set of 3 elements with a binary 
operation * given by the multiplication table 

* a b c 

a a b c 

b b a c 

c c b a 

For example, b * c = c, c * b =b. The element a is the identity inS and 
every element in S has an inverse: a * a = b * b = c * c = a. But * is not 

\ 

associative: 

b * ( c * b) = b * b = a, 

(b *c)* b = c * b =b. 

Hence (S, *) satisfies Axioms (2), (3) but not (1). 
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Alternative axioms of a group. A group is a non-empty set G with a 
binary operation * satisfying 

Axiom 1. (Associativity) The binary operation * is associative. 

Axiom 2'. (Left identity) G has a "left identity" e1 such that e1 *a= a 
for all a in G. 

Axiom 3'. (Left inverse) Each element a in G has a "left inverse" a1 

such that a1 *a= e1• 

The axioms 2', 31 may be replaced by the following Axioms 211
, 311

• 

Axiom 211
• (Right identity) G has a "right identity" er such that a * 

er = a for all a in G. 

Axiom 311
• (Right inverse) Each element a in G has a "right inverse" 

ar such that a* ar = er. 

Theorem 1. Axioms 1, 2, 3 are equivalent to Axioms 1, 2', 3', and to 
Axioms 1, 211

, 311
• 

Proof. Clearly, Axioms 1, 2, 3 imply Axioms 1, 2', 3'. Conversely, assume 
Axioms 1, 21

, 3'. Let a be any element of G. From Axiom 31
, we have 

(1). 

Let b be a left inverse of a1 , i.e., b * a1 = e1• Multiplying (1) by bon the 
left hand side, and using Axiom 1, we have 

( b * a1) * (a * a1) = b * a1 , 

or 

e1 * (a * a1) = e1 , 

by choice of b. Hence by Axiom 2', 

Finally, we have 

a * ( a1 * a) = a * e1 , 

or 

(a * a,) * a = a * e1 , 

or, by (2), 
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(3) 

(2) and (3) show that e1 is the identity of G and a1 is the inverse of a. 
We can similarly show that Axioms 1, 2, 3 are equivalent to Axioms 

1, 2" , 3". D 

Example 11. There is an algebraic system which is not a group but 
which satisfies Axioms 1, 2' and Axiom 3": For each element a E G, there 
is an element a' E G such that a* a' = e1, where e1 is a left identity of G. 

by 
Let S = {a, b} be a set of two elements with binary operation * given 

a* a= a, 

b *a= a, 

a* b = b, 

b * b =b. 

It can be easily checked that * is associative. The element a is a left 
identity of S. Moreover, the element a is a "right inverse" of both a and 
b with respect to the left identity a, i.e., a* a= a, b *a= a. However, S 
has no right identity and hence (S, *) cannot be a group. 

Example 12. (lR*, -7-) in Example 1 satisfies Axioms 2', 3' but not Axiom 
1. In fact, 1 is a right identity and every element a in lR* is its own inverse: 
a -7- 1 = a, a ..;- a = 1. 

Theorem 2. Let G be a semi-group with binary operation *· Suppose 
for any a, binG, the equations a* x =bandy* a= b have solutions with 
x, y in G. Then ( G, *) is a group. 

Proof. Let a be any fixed element in G. Then the equation a * x = a has 
a solution x = x0 say : a * x 0 = a. We will show that b * x 0 = b for every 
b in G. Let b be any element in G. Then the equation y *a = b has a 
solution y = y0 say. Hence 

b * x 0 = (Yo * a) * x0 = Yo * (a * x0 ) = Yo * a = b. 

In other words, x 0 is a right identity of G. 
Also, for any b in G, the equation b * x = x0 has a solution x = b' 

say. That is, b has a "right inverse". Hence ( G, *)satisfies Axioms 1, 2", 
3" and is a group by Theorem 1. D 
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Example 13. Let S be a set consisting of at least 2 elements and define 
a binary operation * on S as follows : 

a* b = b for all a, bE S. 

Then the equation a* x = b has a solution in x, namely x = b, and (S, *) 
is 'a semi-group but not a group. 

Proof. Associativity of* follows from 

(a* b) * c = b * c = c, 

a* (b *c) =a* c =c. 

Hence S is a semi-group. Suppose S is a group. Let e be the identity and 
let a be an element of S with a=/= e. (This is possible since S has at least 
2 elements.) Then a* e =a, by Axiom 2, and a* e = e, by definition of*· 
Hence a = e : a contradiction. So ( S, *) cannot be a group. D 

Note. In Example 13, it follows from the definition of* that the equation 
y * a = b has no solution with y in S if a =1- b. 

Theorem 3. Let G be a finite semi-group with binazy operation *· Sup­
pose G satisfies the following cancellation laws. 
(Left cancellation law). H a, x, y are in G such that a* x = a* y, then 

x=y. 
{Right cancellation law). H a, x, y are in G such that x *a = y *a, then 

X= y. 

Then (G, *)is a group. 

Proof. We will show that for any given a, b in G, the equations a * x = b 
andy* a= b have solutions in G. Suppose G has exactly n elements : 

G = { a 1 , •.. , an}. 

For a given a. in G, consider the following subset of G : 

Now X has exactly n elements since a.* ai =a. * ak implies that ai = ak 
by the left cancellation law. Hence X= G. Thus for any ai in G, there is 
some ar in G such that a. * ar = ai . 

Similarly, the right cancellation law implies that 

G = { a1 * a, , ... , an * a, } 

and hence y *a. = ai has a solution withy in G. Hence, by Theorem 2, 
(G, *) is a group. D 
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Example 14. Let S be the semi-group given in Example 13. Then S 
satisfies the left cancellation law. For if a* x =a* y, then by definition of 
*, we have x = y. However, S does not satisfy the right cancellation law 
for the equation x * a = y * a holds for all x, y E G. From Example 13; 
(S, *) is not a group. 

Example 15. If the condition of G being finite is removed from Theorem 
, 3, then G need not be a group. Take G to be the set of positive integers 

G = {1,2,3, ... ,n, ... }, 

and let * be ordinary multiplication of integers. Then G is an infinite 
semi-group satisfying the left and right cancellation laws but G is not a 
group since every integer greater than 1 has no multiplicative inverse. 

Notation. If G is a group with binary operation *,we often write 

a · b = a * b, or simply, ab = a * b. 

We also write a 1 = a, and for n > 2, an = an- 1 
• a. The inverse of a is 

denoted by a- 1
, and for n < -1, write m = -n, and an = (a- 1 )m. The 

usual rules hold : For all integers m, n, 

Definition 8. The order of an element a of a group G is the smallest 
positive integer n for which an = e, where e is the identity of G. If no 
such integer exists, the element a is said to be of infinite order. The order 
of a is denoted by o(a). 

Example 16. The product of two elements of finite order can be of infi­
nite order. For if 

(-1 1) 
a= 0 1 ' 

then 

ab=(~1 =~)· 
Thus o(a) = 2, o(b) = 2, but ab is of infinite order. 

Theorem 4. Let a be an element of a group G. H ak = e, where e is the 
identity of G, then o(a) divides k. 
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Proof. Let n = o(a), and write k = nq + r, where q, r are integers with 
0 ~ r < n. Then 

Since 0 ~ r < nand n is the smallest positive integer for which an = e, it 
follows that k = nq. 0 

Example 17. Let p be a prime, and for n 2 1, define <Cp .. to be the 
multiplicative group of complex pn -th roots of unity : 

ccp .. = {z E <C : zP" = 1}. 

00 

Let G = u <Cp ... Then G is an infinite group in which every element is 
n=l 

of finite order. 
The above group G is called a quasi-cyclic group. 

Definition 9. A group G is abelian if ab = ba for all a, bin G. 

Example 18. The following groups are abelian. 
(a) The group '0., of integers under ordinary addition, 
(b) The group 'O.,n = {0, 1, ... , n - 1} under addition modulo n, 
(c) The group lR of real numbers under ordinary addition, 
(d) The group <C of complex numbers under ordinary addition, 
(e) The group of rotations in the xy-plane about the origin under com­

position of rotations. 

If n > 1, the group GLn (lR) (see Example 8) is non-abelian. 

Axioms of a ring. Let R be a non-empty set with two binary operations 
+ and · (called addition and multiplication). R is a ring if it satisfies the 
.following axioms. 

Axiom 1. R is an additive abelian group with respect to+. 

Axiom 2. R is a multiplicative semi-group with respect to ·. 

Axiom 3. (Distributive laws). For all a, b, c in R, 

a· (b +c) = (a· b)+ (a· c), 

(a+ b) · c = (a· c)+ (b ·c). 

We denote the ring by (R, +, ·). The identity of the additive group of 
R is called the zero element of R and is denoted by 0. 
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Example 19. The following are rings with the usual binary operations. 

(a} 'lL : the ring of integers, 

{b) ~ : the ring of rational numbers, 

{c) 1R : the ring of real numbers, 

{d) <V : the ring of complex numbers, 

(e) R[x] : the ring of polynomials in the variable x with coefficients from 
a ring R, 

{f) Mn (R} : the ring of n X n matrices with entries from a ring R. 

In {f), two non-zero elements of Mn (R} may have a product equal to 
0. 

Axioms of a field. Let R be a non-empty set with two binary operations 
+ and · {called addition and multiplication). R is a field if it satisfies the 
following axioms. 

Axiom 1. R is an additive abelian group with respect to+. 

Axiom 2. R- {0}, where 0 is the identity element with respect to 
+, is a multiplicative abelian group with respect to ·. 

Axiom 3. (Distributive laws). For all a, b, c in R, 

a· (b +c) = (a· b) +(a· c), 

(a+ b) · c = (a· c)+ (b ·c). 

A field is a ring (R, +, ·) in which (R- {0}, ·) is an abelian group. 

Example 20. The following are fields with the usual binary operations. 

(a) ~ : the field of rational numbers, 

(b) 1R : the field of real numbers, 

(c) <V : the field of complex numbers, 

Example 21. Let p be a prime, and let 

'/Lp = {0, 1, · .. ,p -1}. 

Define E9 and ® in '/LP as follows : 

x E9 y = remainder of the ordinary sum x + y when divided by p, 

x ® y = remainder of the ordinary product xy when divided by p. 

Then '/LP is a field of p elements. 
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Note. A finite field must contain exactly pn elements where pis a prime 
and n is a positive integer. Finite fields a.re called Galois fields, named 
after Evariste Galois (1811-1832) who first introduced them in his ground­
breaking work on solubility of equations. 

Finite fields have some recent applications to coding theory and cryp­
tography. With the availability of fast-speed computations, these applica­
tions are of more than theoretical interest. 
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