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Let me first express my gratitude to President Louis H. Y. Chen of 
the Singapore Mathematical Society for his kind invitation to give this 
talk. My thanks are also due to the Department of Mathematics of the 
National University of Singapore for inviting me to serve for a term on 
their academic staff. It is a privilege and a pleasure to live in Singapore 
and participate in the vigorous mathematical life of the NUS. Next, let me 
offer my congratulations and good wishes to the twelve young men [I wish 
only that there were also some young women] who have received prizes 
here for their mathematical achievements. At least one of the mathematics 
academic staff at NUS won this same award a few years ago. Let us 
look forward to the not-distant day when some of you will be professional 
mathematicians and on the academic staff of the NUS. 

The subject~f our talk today is older than the Pyramids and younger 
than the newest supercomputer. It is concerned with the positive integers 
or natural numbers. These are the numbers we learn about as tiny chil­
dren. They form an infinite sequence. In the all but universally used 
Arabic notation, we write 

1, 2, 3, 4, 5, 6, ... , n, ... , 

the symbol "n" standing for a general positive integer and the final three 
dots meaning that the sequence of positive integers never ends. It goes 
on, as we say, "forever". The positive integers are so important that we 
give them their own name: 1N. The positive integers are the fundamental 
object of all of mathematics. Once God has given us JN, we can construct 
the rest. 

* Lecture given at the prize presentation ceremony of the Singapore Mathematical Society on 30 

August 1988 for the winners of the 1988 Interschool Mathematical Competition. 
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Scientists recongnized many thousands of years ago that 1N is infinite. 
The point has fascinated mankind ever since. We all recognize that we 
have short lives. We have small brains. We use computers as prosthetic 
devices for the brain, but computers too, and the largest computer that 
I can conceive of, are finite as well. And yet whoever or whatever put 
us here and gave us the gift of consciousness has allowed us to recognize, 
though not to understand, this enormous set 1N. 

The infinitude of 1N is what makes mathematics far greater than any 
game. Chess is a marvelous game. Its strategies and tactics, to say nothing 
of the gamesmanship that goes into it, make it a pursuit that men and 
women can devote their entire lives to. But chess is finite. There are only 
so many games of chess. The number on the human scale is very large, but 
after you have listed all of the possible games of chess, there are still an 
infinite number of positive integers to go. Computers today can play very 
good chess, and one fine day they may wipe out human chess geniuses. 
The same comments apply to the Japanese game of go . So far as I know, 
no one has programmed a computer to play go. Still the possibility exists, 
and if there were compelling reasons to teach a computer to play go, it 
could be done. For the number of games of go is also finite. 

Mathematical minds love to play with the fact that 1N is infinite. 
The great German mathematician David Hilbert (1862-1943) had a little 
allegory about a hotel, which has gone into folklore as Hilbert's Hotel. 
The hotel could always accommodate one more guest, for it had an infinite 
number of rooms, labelled with the room numbers 1, 2, 3, .... If the hotel 
was full and a new guest arrived, the occupant of room 1 would move to 
room 2, and so on. This freed up room 1, which was occupied by the new 
guest, while the original guests were comfortably ensconced in their new 
quarters. 

Another mathematical giant of recent times was the German Her­
mann Weyl (1885-1955). I once heard him on the radio, lecturing to the 
listening public on mathematics. In his sonorous voice with its German 
accent, he emphasized the vital importance of the infinitude of the positive 
integers. 

Today we are going to consider, and I am going to talk about, prime 
numbers. A positive integer is prime if (a) it is greater than 1 and (b) its 
only positive integer divisors are itself and 1. We will give the set of all 
prime numbers a special name, lP [this is common but not universal]. I am 
personally fond of primes [fonder of some than others]. I have memorized 
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the first few primes, and I expect that you know them too: 

2,3,5,7, 11, 13, 17, 19,23,29,31,37,41,43,47,53,59, 

61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 113, 

127, 131, 137, 139, 149, 151, 157, 163, 167, 173, .... 

Primes are the building blocks for N. Every integer exceeding 1 is a 
product of positive integral powers of distinct primes. This factorization 
into a product of prime powers is unique, except obviously for the order 
in which we write the primes. For n in fi and n > 1, we can write 

where the p's are distinct primes and the a's are positive integers. This 
great theorem goes back to Euclid, about 300 years before Christ, or about 
the time of Confucius [ ~ L ~ ]. 

All of us use this unique factorization theorem whenever we find the 
divisors of a positive integer. In a humble way, it is used today in the 
City of Rome, where only cars with even license numbers are admitted to 
the city on days with even dates and only cars with odd license numbers 
are admitted to the city on days with odd dates. [Have you heard about 
the young lady who went out with extremely weird men? She liked odd 
dates.] 

Let's go back and look at the little list ( *). It looks as if it might 
go on much further. And indeed it does. Another celebrated theorem of 
Euclid is : 

The set P is infinite. 

Euclid's proof, the same one we use today, is a marvel. We assume 
that the theorem is false, and get a contradiction. As the English mathe­
matician G. H. Hardy (1877-1947) has pointed out, this manoeuvre shows 
the boldness of mathematicians. A chess player may put forth a pawn 
for sacrifice, hoping to lure her opponent into a parlous position. Euclid 
offers the whole game. Write down the first k primes : 

(**) 2,3,5,7,11, ... ,pk. 

Multiply these numbers together and add 1. We get a number that we 
call E (Pk ) , in honor of Euclid: 

( ***) 
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Now assume that the sequence (u) ends somewhere. That is, there 
is a largest prime p1 • Compute the number E(p1). By the unique factor­
ization theorem, E(p,) has at least one prime divisor: E(p1) may or may 
not be prime, but it has a prime divisor, say q. The prime q cannot be 
any of the primes listed in (**) fork= l, as E(p1) =A; · P; + 1 for each 
P; appearing in ( **) and some positive integer A;. Therefore q is not in 
the list ( * *), and so there is no largest prime number. 

We issue a caveat at his point. We do not claim that the numbers 
E(pk) are prime. The numbers E(3), E(5), E(7), and E(ll) are in fact 
prime. The number E(13) is the product of 59 and 509. Dr. Y. K. Leong of 
NUS has computed the prime factors of theE's from E(17) out to E(53). 
The only prime among them is E(31), which is the imposing number 
20056049013. Dr. Leong used a program devised by Professor T. A. Peng, 
also of NUS, using the language MUMATH. 

At the end of this homily, I have appended a table of the primes less 
than 2000. A look at this table shows that these primes are distributed 
among the positive integers in a highly irregular way. Early on there is 
a gap of 14, between 113 and 127. A gap of 14 is reached for the second 
time between 317 and 331. A gap of 18 is reached between 523 and 541. 
A small table of first occurrences of gaps appears as Table II, also at the 
end of this essay. 

For some 2300 years the only way known to compile tables of primes 
was to write a list of the positive integers to be examined and to strike out 
all proper multiples of 2, then of 3, then of 5, and so on. This method is 
called the sieve of Eratosthenes, after its discoverer, who flourished about 
200 B.C. 

The advent of the computer has rendered the search for primes far 
more sophisticated. It is now easy to find primes of the order of 1050 • 

Finding "large" primes is a flourishing industry, partly at least because 
primes are useful in cryptography. One devises a code based on the prod­
uct of two distinct primes, and publishes the product for the world to 
see. To decode a message one must know the factors of this product. Up 
to now, it has been far more difficult to factor an integer than to locate 
primes. Thus the code is all but unbreakable, though with the highly 
ingenious people who work on factoring methods, one cannot tell what 
breakthroughs may appear. The difficulties encountered at present in fac­
toring are well illustrated by a news story that appeared in the Singapore 
Straits Times in October 1988. A team of mathematicians got together 
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and enlisted the use of 400 computers worldwide. With the joint operation 
they succeeded in finding the prime factors of 

11104 + 1. 

I have no idea what the factors are, apart from 2, which is obvious, and 
17, which can be shown to be a factor in a few moments with a 10-place 
calculator. 

For reasons that are far from clear to me, people expend lots of per­
sonal effort and computer time in locating larger and larger primes. Part of 
this is a game, of course, a sort of get-it-into-the-Guinness-book-of-records 
thing. 

H an integer of the form 2a - 1 (a in :N) is a prime, then a has to be 
a prime. To prove this is a trifling exercise. Primes of the form 2P - 1 (p a 
prime) are called Mersenne primes, after the French mathematician-priest 
Father Marin Mersenne ( 1588-1648). We write 2P -1 as· M (p). The French 
mathematician Edouard Lucas showed in 1914 that M(127) is prime. This 
to my knowledge is the largest prime ever found by noncomputer methods. 
With computer searches, a number of Mersenne primes have been found: 
M(p) is prime for p = 11213, 44497, 86243, 123049, and 216091. These 
numbers M(p) are indeed large on the human scale, but beyond 2216091 -1, 
which written out to base 10 has some 72000 digits, there are still an 
infinite number of positive integers. Humankind will never be able to 
compute all Mersenne primes simply by checking individual cases. 

It's a grim thought, and it raises doubts in my mind as to the utility of 
grinding out more and more Mersenne primes. Of course it beats watching 
television and drinking beer. 

The great Frenchman Pierre de Fermat {1601-1665) looked at num­
bers of the form 

The numbers F0 , F1 , F2 , F3 and F4 are prime, while F5 is equal to 641 
times 6700417. You can check these assertions in a few moments with 
your calculator. No larger primes Fm are known. The number F3310 is 
known to be divisible by 5 · 23313 + 1. The number F3310 is roughly equal 
to 

(10990) 
10 , 

which looks pretty large to me. But once again, it doesn't even make a 
dent in the infinite set N. 
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Enough of this arithmetical elephantiasis. Let us turn to a theorem 
about all primes that we can prove. 

We ask: what primes are the sums of two squares (of integers of 
course)? Let's look at the first few primes. We find: 

2=12 +12
; 

5 = 22 + 12
; 

13 = 32 + 22
; 

17=42 +12
; 

29 =52 + 22
• 

This small sample hints that all primes of the form 4m + 1 might be sums 
of two squares. This is in fact true. The prime 2 and all primes of the form 
4m+ 1 are sums of two squares. This wonderful fact was known to Fermat, 
but a proof had to ·wait for Leonhard Euler (1707-1783)·. Plainly any odd 
integer that is the sum of two squares has to be of the form 4m + 1, so the 
theorem determines completely the primes that are sums of two squares. 

We will finish this lecture by proving this theorem. We need a basic 
fact. 

Fact 1. If a prime p divides a product xy of integers x and y, then p 
divides x (pIx) or p divides y (pI y). 

We won't prove Fact 1. 

We also use Gauss's notation [Carl Friedrich Gauss, (1777-1855)] for 
modular arithmetic. For a positive integer m (the modulus) and integers 
x andy, we write x = y (mod m) to mean that m I (x- y) (m divides 
(x- y)). 

Next, given a prime p, consider the set of numbers 

{1,2,3, ... ,(p-1)} =A. 

For an integer x in A, consider also the set of numbers 

{x,2x,3x, ... ,(p-1)x} =Ax. 

H there are j and kin A for which 

jx= kx (mod p), 
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then pI (J' - k) x. By Fact 1, pIx or pI (J' - k). The first is impossible and 
so pI (J' - k). This means that i- k = 0, or j = k. Thus, if we throw 
away multiples of p, the set of numbers Ax is the set A over again, and in 
particular, the number 1 +up for some integer u appears in Ax. We thus 
have our second step. 

Fact 2. For every x in A, there is an x' in A such that xx' = 1 (mod p). 

We use Fact 2 to prove 

Wilson's Theorem. For a prime p, we have 

(p- 1)! = -1 (mod p). 

Proof. The theorem is obvious for p = 2. For p > 2, note that (p -1)' = 
p -1 (notation as in Fact 2). For sin the set {2,3, ... ,p- 2} we must 
have s' =f. s. For, if s2 

- 1 (mod p), then 

p I ( s - 1) or p I ( s + 1), 
and so 

s - 1 = 0 or s + 1 = p. 

Thus the product 

(p - 1)! = 1 . 2 . 3 ..... (p - 1) 

is equal to 

(p- 1) times ~(p- 3) products ss', 

so that (p - 1)! is -1 plus a multiple of p. 0 

Now suppose that pis a prime of the form 4m + 1. We use Wilson's 
theorem and a little algebra to write 

-1 = (p- 1)! 

= 1 . 2 . 3 ... i (p - 1) . i (p + 1) ... (p - 1) 

= (i(p -1))!(-1)t(p-l) (i(p- 1))! 

= ((2m)!)2(-1)2m 

54 

fmod p) 
(mod p) 

(mod p) 

(mod p). 



So we have 

Fact 3. For a prime p of the form 4m + 1, there is an integer a such that 
a2 = -1 (mod p). 

We can now complete our proof. Let b be the unique integer such 
that b < ..;p < b + 1. We look at all of the numbers 

x+ay 

where x and y run independently through the set { 0, 1, ... , b}. There are 
(b + 1)2 of these expressions. Since (b + 1)2 > p, at least two of them must 
be congruent modulo p: 

or 

x1 + ay1 = x2 + ay2 

x1 - x2 = a(y2 - Y1) 

(mod p), 
(mod p), 

(mod p), 

where not both x 0 and y0 are zero. Squaring both sides, we get 

or 

x~ = a2 y~ 
X2 = -y2 
0- 0 

X~+ y~ = 0 

2 2 Xo +Yo= mp 

(mod p), 
(mod p), 
(mod p), 

for some m in lN. Since 0 ~ X; ~ b and 0 ~ Y; ~ b, we have lxo I 
lx1 - x2l ~ b and IYo I = IY1 - Y2l ~ b. Squaring and adding, we get 

X~ + y~ ~ 2b
2 < 2p, 

since we chose b < .JP. The only way for x~ + y~ to be mp with 1 ~ m < 2 
is for 

2 2 Xo +Yo = P· 

This completes our proof, which is the proof of Euler. 

Number theory is a vast subject. Gauss called it the Queen of the 
Sciences. There are hundreds of excellent textbooks on number theory. A 
great classic is 
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Hardy, G. H. and E. M. Wright, 
An introduction to the theory of numbers, 
Oxford, Clarendon Press, first edition 1938, 
now in its fifth edition (1984) . 

. A more recent text, also classic by now, is 
Niven, I. M. and H. S. Zuckerman, 
An introduction to the theory of numbers, 
New York, John Wiley and Sons, 
first published in 1960 and now in its fourth edition (1980). 

A lively account of many special topics is found in 
Schroeder, M. R., 
Number theory in science and communication, 
Berlin-Heidelberg-New York-Tokyo, Springer-Verlag, 
second edition, 1986. 

I cut my eyeteeth on Hardy and Wright. Nowadays I find it slightly 
old-fashioned, but I treasure the myriad ~ours I spent over it. I had the 
privilege of watching Professors Niven and Zuckerman working on their 
book in the late 1950's in Helen and Herbert Zuckerman's cozy livingroom 
in Seattle, USA. 

It remains only for me to thank all of you for your kind attention. 
Good evening to you all and godspeed to all of our young prizewinners. 

Biographical note: Professor Edwin Hewitt is Professor Emeritus at the University 

of Washington, where he taught from 1948 to 1986. He obtained his A.B. in 1940 and 

his Ph.D. in 1942 from Harvard University. Professor Hewitt's field of specialization is 

mathematical analysis. He has published numerous papers and has written three research 

level books and five text books. Professor Hewitt is currently visiting the Department of 

Mathematics, National University of Singapore. 
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Table I 

The primes from 2 to 1999 

2 167 389 631 883 1153 1447 1709 
3 173 397 641 887 1163 1451 1721 
5 179 401 643 907 1171 1453 1723 
7 181 409 647 911 1181 1459 1733 

11 191 419 653 919 1187 1471 1741 
13 193 421 659 929 1193 1481 1747 
17 197 431 661 937 1201 . 1483 1753 
19 199 433 673 941 1213 1487 1759 
23 211 439 677 947 1217 1489 1777 
29 223 443 683 953 1223 1493 1783 
31 227 449 691 967 1229 1499 1787 
37 229 457 701 971 1231 1511 1789 
41 233 461 709 977 1237 1523 1801 
43 239 463 719 983 1249 1531 1811 
47 241 467 727 991 1259 1543 1823 
53 251 479 733 997 1277 1549 1831 
59 257 487 739 1009 1279 1553 1847 
61 263 491 743 1013 1283 1559 1861 
67 269 499 751 1019 1289 1567 1867 
71 271 503 757 1021 1291 1571 1871 
73 277 509 761 1031 1297 1579 1873 
79 281 521 769 1033 1301 1583 1877 
83 283 523 773 1039 1303 1597 1879 
89 293 541 787 1049 1307 1601 1889 
97 307 547 797 1051 1319 1607 1901 

101 311 557 809 1061 1321 1609 1907 
103 313 563 811 1063 1327 1613 1913 
107 317 569 821 1069 1361 1619 1931 
109 331 571 823 1087 1367 1621 1933 
113 337 577 827 1091 1373 1627 1949 
127 347 587 829 1093 1381 1637 1951 
131 349 593 839 1097 1399 1657 1973 
137 353 599 853 1103 1409 1663 1979 
139 359 601 857 1109 1423 1667 1987 
149 367 607 859 1117 1427 1669 1993 
151 373 613 863 1123 1429 1693 1997 
157 379 617 877 1129 1433 1697 1999 
163 383 619 881 1151 1439 1699 
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Table II 
In this table we use Table' I and some help from a larger table of 
primes to list the increasing gaps in the sequence of primes and 
the smallest primes before which these gaps occur. The column 
on the left gives the ~ap g, the corresponding entry in the column 
on the right is p = Pl9), which is the smallest prime such that for 
the greatest prime p' < p, the difference p - p' is g. 

g p(g) 
1 3 
2 5 
4 11 
6 29 
8 97 

14 127 
18 541 
20 907 
22 1151 
34 1361 
36 9587 
44 15727 
52 19661 
72 31469 
86 156007 
96 360749 

112 370373 
114 492227 
118 1349651 
132 1357333 
148 2010881 
154 4652507 
180 17051887 

For more details, see Daniel Shanks's article in Mathematics of Computation 
18 (1964), pp. 646-651 and R. P. Brent's article in the same journal 27 (1973), 
pp. 959-963. 
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