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In a beautiful article Kac (1966) asked whether knowledge of the eigen­
values of the Laplacian operating on smooth functions defined on a bounded 
region R of the plane and vanishing on the (assumed smooth) boundary, BR, 
uniquely determines the geometry of R. If one interprets the eigenvalues 
as normal modes of vibration of a thin membrane which is held fixed by 
a wire frame forming the boundary and which vibrates in the region R in 
accordance with the wave equation, the question can be phrased in physical 
terms: "Can one hear the shape of a drum?" Kac provided a partial solution 
by probabilistic methods. 

In this paper I discuss, also by probability methods, the expansion 

(1) Eexp(-,\kt) = (27rtt 1 IRI- [4(27rt)tt 1 IBRI 

+ (1- h)/6 + 2- 8 (21rt} (faR c2 (s)ds) t} + o(t}), 

where ..\ 1 < ..\2 < ... are the eigenvalues of the Laplacian, I R I denotes the 
area of R, IB R I is the length of the boundary, h is the number of holes in R, s 
is arc length on the boundary, and c(s) is the curvature of the boundary at 
s. The first two terms were obtained by Kac, who also conjectured the third 
after a lengthy heuristic calculation. Subsequent authors have used analytic 
methods to obtain even more detailed expansions. Some references are given 
by Lerche and Siegmund (1987). With respect to Kac's original question, one 
can say on the basis of (1) that one can "hear" the area of a drum, the length 
of its boundary, and the number of holes. A definitive answer to Kac's ques­
tion remains unknown, although the answer to the analogous mathematical 
question in more than three dimensions is known to be negative. 

* Lecture given to the Society on 7 April 1987. 
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2. Random Walk, the Reflection Principle, and Brownian Motion. 

In this section I give the probabilistic background relevant to a proof 
of (1). In order to make the presentation elementary insofar as possible, I 
begin with simple random walk, derive a result equivalent to the so called 
reflection principle, and finally introduce the more technical subject of Brow­
nian motion. See Feller (1957, Chapter III) for a classical treatment of the 
reflection principle. 

Let x1, x2 , ••• be independent random variables assuming the values of 
+ 1 and -1 with probability 1/2 each, and put sn = x1 + ... + Xn. Let 

~~ m) ( 81 ' ... ' 8n I €) = Pr ( x1 = 81 ' ... 'Xn = 8n Ism = €). 

Note that Pr(Sn = k) = ((n+:)/J2-n and hence 

(2) /~m)(81,•••,8nl€) 

Pr(x1 = 81, ... ,xn = 8n) Pr(Sm- Sn = € -2:; 8i) 
Pr(Sm = €) 

= ((m- n :e--nl:; 8i)/2) I Cm :€)/2)' 

provided the denominator is positive, and 0 otherwise. 

Let b be a positive integer and T = inf{n : sn = b}, with the under­
standing that inf(</>) = +oo. 

Proposition 1. Let € < b be an arbitrary integer, and let €' be any 
other integer such that € + €' is even. Then 

where Rn = /~m)(x1, ... ,xnl€)/f~m)(x1 , ••• ,xnl€'), and 0/0 is interpreted 
as 0. 

Proof. Obviously Pr(r < miSm = €) 

m-1 m-1 

= L Pr(r = niSm . €) = L 
n=1 

61 



Dividing and multiplying by/~"") (61 , ••• ,c5n I€'), one obtains 

rn -1 

Pr(r < miSrn = €) = L E{1(r=n)Rn ISm = e'} 
n=1 

Corollary. For arbitrary € < b 

Proof. Let €' = 2b - € > b. Since Sr 
((rn:'i)/ 2 ) = ((rn_:_"i)/J, it follows from (2) that 

b whenever r < m and 

whenever T < m. Since e > b, Pr(r < miSrn = €') = 1, and hence the 
corollary follows immediately from proposition 1. 

Remark. The classical combinatorial proof of the corollary is based on 
the observation that the number of possible paths, Sn, n = 0, 1, ... , m, from 
(0,0) to (m, €) which touch the line y = b equals the total number of paths 
from ( 0, 0) to ( m, 2b - €). The virtue of the preceding derivation is that the 
identity in Proposition 1 is completely general, i.e. it does not depend on 
the exact definition of the first passage time r. Hence in perturbations of 
the present problem where simple exact solutions do not exist, there is the 
possibility of analyzing Proposition 1 to obtain approximate solutions. 

A Brownian motion or Wiener process, w(t), is in a sense which cannot 
be made precise here the limit as m --t co of S!rntJ/m112

• Corresponding to 
Proposition 1, we have for b > 0 and € < b 

(3) Pr(r < tlw(t) = €) 

= E {1(i<tl exp [(€- e'){ w(r)- (€ + e')r/2t}f(t- r)] lw(t) = e'}, 
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where i = inf{s: w(s) = b}. Putting €' = 2b- €, one easily obtains from (3) 

(4) Pr(r < tiw(t) = €) = exp[-2b(b- €)/t]. 

It is possible to derive (3) from Proposition 1 by a brute force calculation. 
A more elegant approach uses the optional sampling theorem of martingale 
theory. 

Remark. An analytic approach to the results of this section is to set 

and observe that u = ub satisfies 

1 1 
u(m + 1, €) = 2 u(m, €- 1) + 2 u(m, € + 1) (€ <b) 

with the initial and boundary conditions u(O, 0) = 1, u(m, b) = 0. Putting 

u(t, €) = lim u 1. ([mt], [mt €]), 
m-+oo m2b 

one can show that 

u(t, €)d€ = Pr {l > t, w(t) E d€} 

and u satisfies the heat equation, 

(€ <b), 

with the initial and boundary conditions u(O, 0) = Dirac delta function, 
u(t, b) = 0. Although we do not solve these equations here, the relation 
of Brownian motion to the heat equation is at the foundation of the devel­
opments in the next section .. At first it seems remarkable that one can learn 
something about wave motion from the study of heat flow, or diffusion, but 
the eigenvalue problems are the same. 
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3. Brownian Motion and Hearing the Shape of a Drum. 

Let R be a bounded region in the plane with a smooth boundary 8R. Let 
€o E Rand let w(t) be a two-dimensional Brownian motion process (a vector 
of two independent one-dimensional Brownian motions) with w(O) = €0 • Let 
T = inf{t: w(t) fl. R} and define p(t, €o, €d by 

p(t,€o,€t)d€1 = Pr(T > t,w(t) E d€1lw(O) = €o)· 

It is known that p(t, €o, €d satisfies the heat equation ~~ = ~ ~p and equals 

0 on 8R, where~ = :z2

2 + :
11

2

2 is the Laplacian and (x, y) can be taken to 
be either €o or €1. It follows from general theory of the heat equation that 
p(t,€o,€t) has an expansion of the form p(t,€o,€d = Ee-~~ctcp,.(€o)cp,.(€I), 
where the· A~e are eigenvalues of ~ ~ and { cpn, n = 1, 2, ... } is a complete 
orthonormal set of eigenfunctions vanishing on a R. As a consequence 

Eexp(-A,.t) = Ji p(t, €o, €o)d€o· 

From this and the relations 

p(t, €o, €1 )d€1 

= Pr(w(t) E d€1lw(O) = €o ){1- Pr(T < tlw(O) = €o, w(t) = €t)} 

= (2ntt 1 exp{- II €1 - €o 11
2 /2t}d€1 [1- q(t, €o, €1 )], 

where we have put q(t, €o, €t) = Pr(T < tlw(O) = €0 , w(t) = €t), follows 

(5) E exp( -A,. t) = (2ntt 1 { IR I - Ji q(t, €o, €o )d€o} . 

Since q(t, €o, €o) -~ 0 as t ---+ 0 for each €o E R, the first term in (1) follows 
at once from (5). To obtain the higher order terms in (1) one must evaluate 
q(t, €o, €o) fort---+ o and €o approaching aR. 

To this end consider the point on a R closest to €o and the cartesian 
coordinate system having this point as its origin, the outward normal as its 
y-axis and the tangent to R as its x-axis. Locally in a neighborhood of 
this point aR is given by the graph of a function y = f(x), where f(O) = 
f'(O) = 0. Let w(t) have coordinates w1 (t) and w2 (t) in this tangent-normal 
coordinate system and define 

T* = inf {t: w2 (t) 2: f(wt(t))}. 
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Let q*(t,c0 ) = Pr(T* < tiw(O) = c0 ,w(t) = c0 ). If q is replaced by q* in (4) 
the error is exponentially small as t ---+ 0, and hence it suffices to study the 
asymptotic behavior of q* (t, co) as t ---+ 0 and co = (0, -y0 ) ---+ (0, 0). Let 
c~ = (0, Yo). By a slight extension of (3) (with b = Yo, c = 0, €' = 2y0 , and 
w(T) replaced by w2(T*)- Yo) 

(6) q* (t, Co) 
= e- 211 ~ It E { exp [ - 2y0 W2 ( T* ) I ( t - T* ) ] I w ( 0) = Co , w ( t) = C~ } 

= e- 211Ut E { exp [- 2y0 f(wi(T* ))l(t- T* )] lw(O) = Co, w(t) = c~}. 

The rest of the proof of (1) is a detailed analysis of (6), which is then 
substituted for q in (5) for Co close to aR and integrated. To see what is 
involved without considering the substantial technical details, note that since 
f(x) "' x2 f"(O)I2 as x---+ 0 and w~(T*) is with overwhelming probability 
of order T*, which in turn is < t, the argument of the exponential function 
inside the conditional expectation in (6) is of order Yo ---+ 0 as t ---+ 0. Hence 

(7) ( t, Yo ---+ 0) , 

which says in effect that when co is close to a R the probability of crossing 
a R is to a first approximation the same as the probability of crossing the 
tangent at the point closest to co (cf. (4) with c = 0). 

A change of variable in (5) and some simple estimates show that for 
sufficiently small c 

(8) /i q(t,co,co)dco = 1R1~ q*(t,c0 )[1-y0 c(s)]dy0 ds+O(e- 2 ~ 2 1t), 

where sis arc length on aR and c(s) is the curvature of aR at s. Substitution 
of (7) into (8) easily yields the second term in (1). 

To obtain the third term in (1) we use a Taylor series expansion to show 
that the conditional expectation on the right hand side of (6) equals 

(9) 1-yof"(O)E{w;(T*)I(t-T*)iw(O) = c0 ,w(t) = c~}+ .... 
Moreover, in the limit as t,y0 ---+ 0, T* may be replaced by r = inf{t 
w2 (t) 2: 0}. This substitution and some fairly standard calcul?-tion show 
that (9) equals 

1 - Yo f" ( 0) E { w ~ ( r) I ( t - r) I w ( 0) = Co , w ( t) = C~ } + ... 

= 1- f" (o)c t y~ if!( -2y0 ltt)lcp(2y0 Itt) + ... , 
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where <p(x) = (27r}- i exp( -x2 /2) and ~(x) = J~ co <p(u)du. If the boundary 
oR is parameterized by arc length s and if the origin (0, 0) of our special 
tangent-normal coordinate system corresponds to s0 , then f" (0) = -c(s0 ), 

where c is the curvature of oR. Hence by (6) 

which when substituted into (8) yields the second and third terms of (1). 
(Note that fu c(s)ds = 271"(1 -h).) 

The pattern is now clear, although admittedly the details are not. To 
obtain the fourth term in (1), one must take one more term of the Taylor 
series in (9). It is necessary to distinguish between the cases f" ( 0) < 0 and 
f" (0) > 0 in order to approximate the difference between T* and 'Tj and with 
substantially more calculation one can complete the proof of (1). Details 
of this argument, related results, and additional applications are given by 
Lerche and Siegmund (1987). 
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