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When we use the term "polynomial equation", our mind 

conditioned with sets of mathematical notations will immediately 

conceptualize an equation of the form 

In the ancient world, where mathematical symbols were non­

existent and mathematical expressions were in a verbalized form, 

how was, for instance, a quadratic equation initially 

conceptualized? And after the equation was formed, how was it 

solved? In this lecture, I shall be giving you a general survey 

of the development of such equations in China from antiquity to 

the early 14th century. 

Square roots and quadratic equations 

Among the existing texts on Chinese mathematics, the two 

earliest are the Zhou bi suanjing [a] (The arithmetic classic of 

the gnomon and the circular paths of heaven) and the Jiu zhang 

suanshu [b] (Nine chapters on the mathematical art). A 

conservative dating of the former would be around 100 BC while 

the latter is generally placed between 100 BC and 100 AD. It is 

well known that the Zhou bi suanjing contains a description of 

the hypotenuse diagram or xian tu [c] (see Fig. 1) which depicts 

* Text of Presidential Address deliverd at the Annual 

Meeting of the Singapore Mathematical Society on 19 March 1986. 
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one of the earliest proofs of Pythagoras theorem. However, it is 

not so well known that this diagram also provides one of the 

earliest examples in Chinese mathematics on the formulation and 

concept of a quadratic equation. The proof of Pythagoras theorem 

is generally as follows 

Referring to any one of the right-angled triangles shown in 

Fig. 2 , (namely ~s AKH, KGF, AID, JFD, coloured in red and ~s ABD, 

DFE), we let the shorter orthogonal side be a, the longer orthogonal 

side be b and the hypotenuse be c. 

Then 

square AHCB + square GFEC 

square AKFD 

2 
c 

For the derivation of a quadratic equation from the diagram, b-a 

and c are known quantities and a is the unknown which we 

represent by x. 

Then we have 

1 2 {square AKFD - square GJIH} 

Thus we have the equation 
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The knowledge of thie equation was used to solve one of the 

problems (Problem 11) in the chapter on right-angled triangles in 

the Jiu zhang suanshu. 

In Chapter 4 of the Jiu zhang suanshu, there is a general 

description of a method of finding the square root of a number. 

Like most methods in the book, this description is meant for 

computation by means of counting rods. The pithiness of the text 

can be appreciated when it is pointed out that Wang & Needham [1] 

took seven pages to explain this little passage consisting of one 

hundred and thirteen characters. 

Below are some of the steps of the method illustrated by the 

following example. 

"Find the side of a square whose area is 55225. Answer 

(A) 

R5 2 

R4 1 5 2 2 5 

R3 

R2 

Rl 

4 

1 

(D) 

5 

4 

2 

1 

1 

1 

2 

5 2 

(B) 

2 

5 2 

2 9 

4 3 

1 

(E) 

12 

2 

2 5 1 5 2 

2 

1 

(C) 

3 2 

2 5 2 3 

4 3 

1 

(F) 

235." 

2 5 

3 

2 5 



R5 2 3 2 3 5 

R4 2 3 2 5 2 3 2 5 

R3 2 3 2 5 

R2 4 6 4 6 5 

Rl 1 1 

(G) (H) 

In (A), 1 is placed in R1 and 55225 in R4 . 

In (B), 1 in R1 is shifted to the left by two steps of two places 

each. The first component of the root, 2, is placed in the 

hundreds position of R
5

. 2 is multiplied by 1 in R
1 

and the 

product 2 is placed in R
2 

above 1. Next, 2 is multiplied by 2 

in R2 and the product 4 is placed in R3 as shown. 

In (C), R4 ~ R4 - R3 - 55225-40000- 15225. 

In (D), the number in R
2 

is doubled. The numbers in R
1 

and R
2 

are shifted to the right by one step of two places and one place 

respectively. 

In (E), the second component of the root, 3, is placed in the 

tens position of R5 . 3 is multiplied by 1 in R1 and the product 

3 is placed in R2 above 1. Next, 3 is multiplied by 43 in R2 and 

the product 129 is placed in R
3 

as shown. 

In (F), R
4 
~ R

4
- R

3 
= 15225- 12900 = 2325. 

In (G), 3 in R
2 

is doubled. The numbers in R
1 

and R
2 

are shifted 

to the right by one step of two places and one place respec­

tively. 
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In (H), the third component of the root, 5, is placed in the 

units position of R
5

. 5 is multiplied by 1 in R1 and the product 

5 is placed in R2 above 1. Next, 5 is multiplied by 465 in R2 
and the product 2325 is placed in R3 . There is no remainder when 

this number is subtracted from the number in R4 . Hence the root 

is 235. 

In this type of computation the positions of the rod 

numerals occupying the particular rows and columns are of vital 

importance. The derivation of the method is not explained in the 

book. This is typical of the general style of the Jiu zhang 

suanshu and also of other ancient mathematical texts where the 

aim is to show the reader how to solve a problem using the 

counting rod system. It is perhaps easier for a modern computer 

scientist to understand the structure of the old Chinese text 

than for a historian steeped in the Western tradition of 

deduction. A packaged software program is used by the computer 

scientist to obtain end-results on a computer screen. Although 

the underlying reasons for the steps taken are not given, it is 

evident that the program could only be constructed on the 

absolute knowledge of these reasons. 

It is therefore reasonable to infer that the author(s) of 

the Jiu zhang suanshu were not only aware of the derivation of 

the square root method, but abstracted from it a general method 

suitable for computation with counting rods. There is strong 

evidence and it has been generally accepted that the derivation 

of the method for extracting a square root was originally based 

on a diagram as shown in Fig. 3 [2]. This is the earliest extant 

diagram which was given by Yang Hui [d) of the 13th century, but 

as early as the 3rd century, Liu Hui [e) had already given hints 

of such a derivation. Returning to the example on the square 
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root of 55225, the root is made up of three parts, viz. 

200 + 30 + 5. The derivation of this root is explained 

geometrically in Fig. 4 which shows square ABCD with an area 

55225. The three main stages in this process are first, the 

removal of area AEFG (i.e. 200 X 200), next, the removal of area 

EFGHIJ (i.e. (200 X 2 + 30} X 30) and lastly the removal of area 

HIJBCD (i.e. (200 X 2 + 30 X 2 + 5} X 5). 

By adapting the original geometrical concept of square root 

extraction into the counting board system, the Han mathematicians 

took a unique step which was to have far reaching effects. A 

general method was evolved, which turned a geometrical concept 

involving an algebraic thought process into an arithmetic­

algebraic procedure, which was later to be developed into an 

algorithm. 

Furthermore, the depiction of the stages on the counting 

board showed algebraic representations of quadratic equations, 

which when written in our present notation are x2 + 400x = 15225 
2 (see D) and x + 460x = 2325 (see G). Thus from the procedure of 

extracting the square root of a number, the Han mathematicians 

could also find a solution of a quadratic equation of the above 

type. It is therefore not surprising that the twentieth problem 

of Chapter 9 of the Jiu zhang suanshu involves the equation 
2 

x + 34x - 71000 with 250 as the given solution. The method is 

not given and is implied to be known. 

Problems involving this type of equation can also be found 

in the fifth century book Zhang Qiujian suanjing [f] (Zhang 

Qiujian's mathematical manual) [3]. Liu Yi [g] (fl. 1080-1113) 

in his Yi gu gen yuan [j] (Discussions on the old sources) was 

responsible for writing down a most comprehensive range of 
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methods to solve quadratic equations. This book is lost, but 

these methods were recorded and anlysed by Yang Hui in the Tian 

mu bilei cheng chu jiefa (i] (Practical rules of mathematics for 

surveying) (1275) [4]. The methods on the formation and solution 

of different types of quadratic equations were based on 

geometrical consideration. As an illustration, we take two 

problems from this book. It is given that the area of a 

rectangle is 864 bu [j] and the difference between its length and 

breadth is 12 bu. Fig. 5 illustrates the formation of the 

equation x2 + 12x 864 in terms of the unknown which is the 

breadth, and Fig. 6 illustrates the derivation of x2 - 12x 864 

in terms of the length. Figs. 7 and 8 show the geometrical 

concept of solving the above two equations respectively. The 

diagrams reveal different dissections and shapes for different 

methods even when the equation is the same. It is impossible 

from these derivations to abstract a common geometrical method to 

solve a general quadratic equation. However, when these various 

methods were transcribed into operations on the counting board, 

it was revealed that there were corresponding similarities in the 

stages of the different operations. It was in this manner that a 

general method for extracting a root of a quadratic equation was 

perceived on the counting board. 

Cube roots and cubic equations 

The Chinese method of extracting the cube root of a number 

is similar to the square root method. It is in fact an extension 

of the latter. A description of this method is found in the Jiu 

zhang suanshu and has been translated and analysed by Wang and 

Needham [5]. Just as in the case of the square root method, a 

section of the cube root method, which involves a transformed 

cubic equation, can immediately be applied to solve a cubic 
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equation of the form. 

3 2 
x + ax + bx - c , 

where a, b and c are positive. 

The first appearance of cubic equations in Chinese texts is 

found in the seventh-century book Qi gu suanjing [k] 

(Continuation of ancient mathematics) by Wang Xiaotong [1]. All 

the twenty-eight cubic equations in this book are of this type. 

Although no detailed method is given, we are told to find a 

positive root for each equation by the cube root method. This 

important revelation indicates that by the seventh-century and 

most probably much earlier, the Chinese mathematicians were aware 

of a connection between the extraction of cube roots and that of 

cubic equations. 

Working from the cube root method the Chinese encountered no 

difficulty in solving cubic equations. In the 9th century, the 

Arabs used intersecting cones to sovle cubic equations [6]. 

Recent studies by Rashed [7] have shown that by the 12th century, 

they could solve numerical cubic equations similar to the methods 

initiated in the Jiu zhang suanshu. In Europe, there was not 

much progress on the subject till the well-known controversy 

between Cardan and Tartaglia in the 16th century [6]. 

Jia Xian [m] and the Pascal triangle 

A study of the existing Chinese mathematical texts shows 

that Jia Xian (11th century) provided the bridge which connected 

the solutions of quadratic and cubic equations to the solutions 

of equations of higher degree. Although his work is no long 

extant, some of his contributions were quoted by Yang Hui. 
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These are 

1. the introduction of the Pascal triangle in connection with 

root extractions [8] and, 

2. a distinction being made between two methods of root 

extraction - li cheng shi suo [n] (unlocking the coefficients 

by means of a chart) and zeng cheng fangfa [o] (extraction 

method of adding and multiplying) [9]. 

The Pascal triangle (Fig. 9) was constructed in connection 

with the extraction of roots and is associated with the first and 

older of the above two methods. The technique of this method 

involves the multiplication by 2 (for square root) and by 3 (for 

cube root) of certian numbers. The second method called zeng 

cheng fangfa substitutes these processes by a series of 

successive additions. In so doing a ladder or algorithm system 

is evolved and can easily be extended to extract the fourth root, 

to solve quartic equations or to solve polynomial equations of 

any degree. 

Fig. 9 
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The algorithm method of solving polynomial equations 

What is the algorithm method? To explain this as simply as 

possible I have chosen a well-known problem from Qin Jiushao's [p] 

Shu shu jiu zhang [q] (Mathematical treatise in nine sections) 

(1247) as an illustration. This problem [10] involves the 

equation 

4 2 
-x + 763200x - 40642560000 - 0 . 

In displaying the solution of this equation, whose root is 840, 

Qin had 21 panels showing the positions of the rod numerals in 

the various stages of calculation. The following is a very much 

condensed version. 

8 0 0 

- 4 0 6 4 2 5 6 0 0 0 0 4 0 6 4 2 5 6 0 0 0 0 

0 0 

7 6 3 2 0 0 7 6 3 2 0 0 

0 0 

1 - 1 

(i) (ii) 

8 0 0 8 0 0 

3 8 2 0 5 4 4 0 0 0 0 3 8 2 0 5 4 4 0 0 0 0 

9 8 5 6 0 0 0 0 8 2 6 8 8 0 0 0 0 

1 2 3 2 0 0 1 1 5 6 8 0 0 

8 0 0 1 6 0 0 

1 1 

(iii) (iv) 
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R6 8 0 0 

R
5 

3 8 2 o 5 4 4 o o o o 
R4 - 8 2 6 8 8 0 0 0 0 

R3 3 0 7 6 8 0 0 

R
2 

- 2 4 0 0 

R
1 

- 1 

(v) 

8 4 0 

3 8 2 0 5 4 4 0 0 0 0 

- 8 2 6 8 8 0 0 0 0 

- 3 0 7 6 8 0 0 

- 3 2 0 0 

- 1 

(vii) 

8 0 0 

3 8 2 0 5 4 4 0 0 0 0 

8 2 6 8 8 0 0 0 0 

- 3 0 7 6 8 0 0 

- 3 2 0 0 

- 1 

(vi) 

8 4 0 

0 0 0 0 0 0 0 0 0 0 0 

- 9 5 5 1 3 6 0 0 0 

3 2 0 6 4 0 0 

- 3 2 4 0 

- 1 

(viii) 

In (i), the coefficient of x4 is placed in R
1

, the coefficient of 

x3 and x
2 

in Rand R respectively and the constant term in R
5

. 

In (ii), the number in R
1 

is shifted to the left by two steps of 

four places each. The numbers in R
2

, R
3 

and R
4 

are shifted to 

the left by two steps of three, two and one place each 

respectively. The first component of the root 800 is placed in 

R6. 

In (iii), R2 - R1 X 800--800 

R3 - 763200 + R2 X 800 

- 763200 + (-800 X 800) 

- 123200 
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R4 - 0 + R3 X 800 

- 123200 X 800 

- 98560000 

R5 - -40642560000 + R4 X 800 

- -40642560000 + 98560000 X 800 

- 38205440000 

Qin called panel (iii) the first transformation. 

In (iv), R2 - -800 + Rl X 800 

- -800 + (-1 X 800) 

- -1600 

R3 - 123200 + R2 X 800 

= 123200 + (-1600 X 800) 

- -1156800 

R4 - 98560000 + R3 X 800 

- 98560000 + (-1156800 X 800) 

- -826880000 

Panel (iv) is called the second transformation. 

In (v), R2 - -1600 + Rl X 800 

- -1600 + (-1 X 800) 

- -2400 

R3 - -1156800 + R2 X 800 

- -1156800 + (-2400 X 800) 

- -3076800 
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Panel (v) is called the third transformation. 

In (vi), R2 - -2400 + Rl X 800 

- -2400 + (-1 X 800) 

- -3200 

Panel (vi) is called the fourth transformation. 

In (vii), the number in R4 is shifted backwards to the right 

by one place, the number in R3 by two places, the number in R2 by 

three places and the number in R1 by four places. The second 

component of the root 40 is placed in R6 . 

In (viii), R2 - -3200 + Rl X 40 

- -3200 + (-1 X 40) 

- -3240 

R3 - 3076800 + R2 X 40 

- -3076800 + (-3240 X 40) 

- -3206400 

R4 - -826880000 + R3 X 40 

= -826880000 + (-3206400 X 40) 

- -955136000 

R5 - 38205440000 + R4 X 40 

- 38205440000 - (95513600 X 40) 

- 0. 

Since the number in R5 is zero, 840 in R6 is an exact solution of 

the quartic equation. 
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By the 13th century, the mathematicians in China were 

familiar with the algorithm method of solving a numerical 

equation of any degree. Qin Jiushao, Yang Hui, Li Ye [r] and Zhu 

Shijie [s] used the method. This method is an algebraic one 

which can be applied to solve equations of any degree. It is now 

generally accepted that this method is similar to the techniques 

of solving a polynomial equation introduced by Ruffini and Horner 

into Europe at the beginning of the nineteenth century [11]. 

Both Ruffini and Horner were blissfully unaware that they were 

rediscovering a method which could be traced back some seventeen 

centuries. 

Formation of polynomial equations 

Accompanying the evolution of a general method of solution 

for a polynomial equation, changes in the formation of the 

equation itself were also taking place. The climax to these 

changes was reached with the introduction of the tian yuan [t] 

(celestial element) notation where an equation was formulated in 

terms of the unknown called yuan [u]. On a counting board, the 

coefficient of an unknown, x, would be placed in the row 

indicated by the character yuan and the coefficients of 

successive powers of x would be placed in successive rows either 

above or below this. For instance, the notation 

Ill' m~ 
Q yuan 

n=rm 
m~ 

fR:l 
I 
25 



represents the equation 

5 4 3 2 x - 9x - 8lx + 729x - 3888 - 0 . 

A diagonal stroke across the last non-zero digit of the number 

indicates a negative term. The notation can also represent the 

expression x5 - 9x4 - 8lx3 - 729x2 - 3888 and whether it 

represents an equation or not is judged from the meaning of the 

text. This notation was employed by Li Ye and Zhu Shijie in 

showing how a complete equation was formed from the data of a 

problem. One of the problems in Zhu Shijie's book Si yuan yu 

jian [v] (Jade mirror of four unknowns) written in 1303 invovles 

the equation 

16x10 - 64x9 + 160x8 - 384x7 + 512x6 - 544x5 + 465x
4 

+ 126x3 + 3x2 - 4x 177162 - 0 . 

Problem 14 (Fig. 10) of Li Ye's Yi gu yan duan [w] (Old 

mathematics in expanded sections) has the equation 

2 
1.88x - 596.4x + 13735 - 0. 

As with all problems in the book, the derivation of this equation 

by the tian yuan notation is shown side by side with the old 

geometrical method of forming the equation. 

In another work Ce yuan hai jing [x] (Sea mirror of circle 

measurements), Li showed how the use of the counting board could 

be exploited to advantage. The usual practice was to arrange the 

successive coefficients of a polynomial equation in a column on 

the counting board with the character tai [y] to indicate the 

absolute term or the character yuan to indicate the coefficient 

of x. Li ingeniously extended the column in the opposite 
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direction to place the coefficients of the reciprocal of x and 

its successive higher powers (see below). 

n 
X 

2 
X 

X 

tai 

In so doing, he introduced without any difficulty the concept of 

the reciprocal of x and its higher powers and treated their 

coefficients on the same level as those of x and its higher 

powers. In the solution of the algebraic equation involving the 

reciprocals of xn, Li was equally ingenious. He moved the 

character tai which represented the absolute term and placed it 

next to the coefficient of the highest power of ! . In this 
X 

manner, the equation was changed to a polynomial equation whose 

method of solution was known. For example, the equation (Chap. 

11, Prob. 18) 

becomes 

-x3 - 1406x2 - 511907x - 4730640 + 10576065600! 0 
X 

-x4 - 1406x3 - 511907x2 - 4730640x + 10576065600 0 . 
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Polynomial equations in several variables 

So far all the equations are in terms of one unknown, which 

in modern algebraic notation we have represented by x, and which 

the 13th century Chinese mathematicians called tian yuan. Zhu 

Shijie took a big stride forward when he introduced polynomial 

equations in two, three and four unknowns in his work Si yuan yu 

jian (Jade mirror of four unknowns) written in 1303. The names 

of the second, third and fourth unknowns are di yuan [z] (earth) 

ren yuan [aa] (man) and wu yuan [ab] (thing) respectively. Zhu 

showed how a set of equations in different unknowns could be 

reduced to a single equation in one unknown [12]. The following 

example (Chap. 3, Sect. 8, Prob. 6) is taken from his book. A 

set of equations in four unknowns of the form 

2 2 2 -2 2 (y-x) + (z-x) + (z-y) + (z-y-x) + (x+y-z) 

3u + u2 + u3 ~ 2u4 - 0 

2 4 2 
(x+y) - 2xy + x + y + z - u + z - y 

1 3 
2(x+y+z) + x + y - z u 

2 2 2 
X + y = Z 

is reduced to an equation in one variable, 

2006u14 - 11112u13 + 22292u12 - 19168u11 + 2030u10 + 12637u9 

879Su8 - 8799u7 + 19112u6 - 9008u5 - 384u4 + 1792u3 - 640u2 

768u + 1152- 0 (Ans. u- 2). 

In so doing, Zhu established the lead by the Chinese for over 

four hundred and fifty years in the elimination theory of 

polynomial equations of several variables. In Europe, it was 

29 



Etienne Bezout who initiated the study of solving a pair of 

polynomial equations in two unknowns in 1764 [13]. 

Conclusions 

The counting rod system was used for computation in China 

since the Warring States period (480 B.C. to 221 B.C.). The lead 

that the Chinese mathematicians had in the development of 

polynomial equations was through the use of this mode of 

computation. The ancient Chinese initially used geometrical 

models to express their algebraic notions. This tradition known 

as geometrical algebra was also common among the Babylonians, 

Greeks, Indians and Arabs. However, unlike the other 

civilizations, the Chinese went a step further in arithmetizing 

the geometric concepts on the counting board, where positions 

played a vital role. In taking this important step, mathematical 

thinking was switched from a verbalized geometric form to a rod 

numeral notational form. While the geometric methods were often 

abstruse, which make descriptions difficult and generalizations 

almost impossible, when these methods were transcribed on to the 

counting board, a new dimension in mathematical thinking became 

available. Patterns and symmetries were perceived on the board 

and these enabled methods to be generalized and extended. In 

such a manner, a method of finding a root of a polynomial 

equation of any degree to any decimal place was evolved and this 

was further developed to solve a set of simultaneous polynomial 

equations of up to four unknowns. 

In the course of time, positions on the board no longer just 

held numerals but symbolized abstract and generalized concepts. 

The tian yuan notation was evolved from the manner in which 

polynomial equations were displayed and solved on a counting 
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board. In the tian yuan notation, positions on the counting 

board imply the symbols for a polynomial equation which we use 

today. Thus, with the knowledge of this notation , the 

formulation of a polynomial equation of any degree was done as 

easily in 13th Century China as it is done today. The notation 

was flexible, as Zhu Shijie had no difficulty in extending it to 

express his set of polynomial equations in four unknowns. The 

development of polynomial equations in traditional China is an 

important illustration of the initial stage of how man acquired 

the ability to think in terms of symbols. Through this and other 

examples in the history of Chinese mathematics, it can be said 

that the concept of the symbolic form of algebra, which is an 

essential factor in modern mathematics, took its roots on the 

counting board of China. 
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GLOSSARY 

a Jll~Jf-tf b 1L"t-'f-~ c ~t 1!1 d ~4 

e j!J.ffi. f ~liflt.;f-tf g j!J_jl h 1X. *~~~ 
i \11 til tt. ~ *-Fit. ;f!~ f} k iif.-t- Jf-tf 

.l.:fi! m t1C n .:a:.b\4-~ 0 ~f*-~~ 
p j..tL.g q .ft.:f11L-:t r 4:•,1.. lp s *-~.~ 
t -*._;;(. u Jt v ~;;(.£~ w A -t-i'IC.It 
X ~·llll~it y .k. z ~Jt a a A..J(. 

ab 4hJt ac ~$J.:O if- ad ~ j(..ft ~ ~ i~ X.l: 
ae 4:-!F a f ~...bf.~ ag tf 1!1 -51\.ft~fel ~ 
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