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I. Introduction. 

At the beginning of this century, linear algebra had very 

few applications in mathematical physics. Even as late as 1926, 

when Heisenberg and Born introduced matrix methods into quantum 

mechanics, the fact that matrix multiplication is not commutative 

was regarded as one of the most bizarre aspects of the new 

theory. Today, linear algebra has penetrated virtually every 

branch of mathematical physics, from cosmology to elementary 

particle theory, and it would be quite impossible to give a 

useful survey of its manifold applications throughout the 

subject. Instead, these notes describe a typical physical 

problem in which linear algebra arises in a natural and striking 

way. 

Broadly speaking, there are two ways in which linear algebra 

can be of importance in a physical theory. Firstly, linear 

algebra is of course a useful technique. For example, many 

physical theories involve large systems of linear equations, and 

linear algebra provides concepts and methods for solving such 

systems, or at least for deciding whether solutions exist. 

However, linear algebra can also arise in a second and much more 

fundamental way. We are familiar with the idea that the basic 
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quantities of a physical theory (such as Newtonian mechanics) can 

be either scalars or vectors. In such a theory, linear algebra 

is not merely a useful tool : rather, it forms an essential part 

of the theory itself. The theory of rotating rigid bodies gives 

an interesting example of this second type of application of 

linear algebra, and forms the subject of these notes. 

II. Rotation of Rigid Bodies in Two Dimensions 

A rigid body can be defined as a system of particles such 

that the distance between any two particles is independent of 

time. In this section we consider such a body rotating about a 

fixed axis A. In this case the path of each particle is confined 

to a plane, so the whole problem is essentially two-dimensional. 

Let m. be the mass of the ith particle, and r. be its 
1 1 

perpendicular distance from the axis A. (For the present, we 

treat the body as a finite collection of particles.) The moment 

of inertia of the particle is defined as mir~. The moment of 

inertia of the whole body is defined as 1 m.r~ , where the sum 
1 1 

will always be taken over the whole set of particles. (For a 

continuous body, we replace 1 by I in the usual way, and obtain 
2 I r dm.) Clearly the moment of inertia of a body depends on its 

mass, shape, and the distribution of mass within it. It also 

depends on the orientation of the axis A. 

If V. is the speed of the ith particle, then the total 
1 1 2 

kinetic energy (K.E.) of the body is 1 2 miVi. Now if w is the 

angular speed of rotation of the body, we obviously have V. 
1 

~ !2 2 2 1 2 L m.r.w whence K.E. - -2 Iw , 
1 1 
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2 where I • L miri is the moment of inertia. Notice the analogy 

1 2 of this with the formula K.E. - 2 MV 

The angular momentum of the ith particle is defined as 
2 

mirivi. The total angular momentum ish • L miriVi- L miriw 

- Iw. Notice the analogy with the usual formula for momentum. 

The principle of angular momentum conservation states that a 

system on which no external toques act has constant angular 

momentum. (Here we can think of "torques" as "twisting forces".) 

Clearly, all of the quantities describing the rotational 

motion of a rigid body about a fixed axis (kinetic energy, 

angular momentum, etc.) are controlled by I, the moment of 

inertia. In any given problem, we have to calculate I from the 

shape and mass-distribution of the body; in principle, this is 

just an exercise in integral calculus, using I - J r 2dm. 

III. Rotational Motion in 3 Dimensions 

The study of rotational motion about a fixed axis is 

somewhat artificial, because (unless it is forced to do so) an 

arbitrary rigid body will not rotate steadily about an axis which 

is fixed in space. Rather, it will tend to tumble around in a 

complicated way, and we can only speak of an instantaneous axis 

of rotation. In order to deal with this, we need some way of 

describing rotations in 3 dimensions. 

By its very nature, a rotation does not change the lengths of 

vectors or the angles between them. Any rotation can therefore 

be represented by a linear transformation R which is orthogonal, 

i.e. if I denote the matrix of R with respect to some basis (say 
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T 
i j k) by [R], then [R] [R]- 3x3 identity matrix. (Henceforth 

we adopt the custom of using the same symbol for a linear 

transformation and its matrix with respect to a given basis, i.e. 

we drop the [ ].) 

We shall describe the position of a rotating rigid body as 

follows. At the centre of rotation, set up an 1 j k basis, fixed 

. 1 N i i h 1 b . t ~ ~ 1n space as usua . ow mag ne an ort onorma as1s , m, n 

t ~ ~ 
embedded in the body and rotating with it. We choose , m, n, 

t ~ ~ 
such that, at timet 0, - 1, m- j, n- k. Then as time goes 

on, t, ~. and n rotate away from i, j, k. By comparing the two 

bases, we can tell how far the body has rotated. Of course, we 

will have t- R1, ~- Rj, ~- Rk, where R is a rotation 

t ~ ~ transformation which must depend on time, since , m, n are 

changing while 1, j, k are fixed. That is, the matrix of R will 

have components which are functions of time instead of numbers 

. ~ 

More generally, let r(t) be the position vector of any 
~ ~ ~ 

particle in the body. Then we have r(t)- Rr(O), where r(O) is 

the position of the particle at time t - 0 (and is therefore a 
~ . ~ d ~ dR ~ 

constant vector.) The velocity v 1s v- dt r- (dt) r(O). Now 

since RT is the inverse matrix of R, we have t(O) - R-l t(t) 
T~ 

R r(t), and.so, 

V - (dR)RT t(t) 
dt 

substituting this 
~ 

- Sr(t), where by 

into the formula for V, we get 

definition S • (~)RT (matrix 

product). Thus we see that the velocity of a particle in a rigid 

body is related to its position vector by the linear 

transformation S. 

Now S has the crucial property of being antisymmetric. That 

is, T s - -s. To see this, take the equation RRT- identity and 

differentiate both sides. Then we get dR RT d (RT) - 0. The +R-dt dt 
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T first term is S, and the second is S . To see this, remember 

that for any two matric~s A, B we have (AB)T BTAT. Hence 

S
T _ T 

Thus we have S + 0, i.e. S - -S. Now let us consider the 

matrix S. It is easy to see that any 3x3 antisymmetric matrix 

must have the form [ -~ ~ ~ ] 
-b -c 0 

Thus, S must have this form. 

Writing V- [ :; ] and i- [ ~] we have, from V- si, 
z 

a : l [ ; l [ _:~ : :: ] 
0 z bx - cy 

0 

-c 

But this answer looks suspiciously like a vector (cross) product 

of two vectors. In fact, some experimentation 

~- [=!l [ ay + bz ] ~ ~ define 
' 

then w x r - -ax + cz 
-bx cy 

Thus we have the important formula 

v- ~ ~ 
w x r . 

shows that if we 

But what is ~ ? Suppose t and V both lie in the xy plane. It is 
~ easy to see that w must point along the z axis, so we can write 

it as ~- wk. Then one finds easily that lVI - wltl, i.e. w is 
~ just the angular speed. Thus w is a 3-dimensional, vectorial 

generalisation of angular speed. We call ~ the angular velocity 
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vector. It is possible to show that the magnitude of ~ gives the 

angular speed about the instantaneous axis of rotation, whereas 
~ 

the direction of w gives the direction of the instantaneous axis. 

Thus ~ is not usually constant; as the body tumbles around, ~ 
changes so that it always points along the instantaneous axis. 

The above derivation of the formula V ~ ~ w x r provides an 

example of the first type of application of linear algebra 

mentioned in the introduction. Notice that there are no matrices 

in the final result; we only used them as a technical aid, and, 

in fact, there are other derivations of this result which make no 

mention of matrices whatever. We now turn to an application to 

the second type. 

IV. Moment of Inertia as a Linear Transformation 

In 3 dimensions, we define the angular momentum of the ith 

particle as ti x.miVi (vector product), and the total angular 

momentum as L ti X miVi - ~. (It is not difficult to show that 

these definitions reduce to the previous ones if we confine 

everything to the xy 
~ ~ ~ ~ 
vi- w x ri, and so li 

'd . ~ (~ ~) 1 ent1ty a X. u x c 
~2~ ~ 

h- ~ mi(r.w- (r.• 
1 1 

plane.) Now for each particle, we have 
~ ~ ~ 

~ mirix (w x ri). Now using the 

( ~a ~)~ (~ ~)~ b · • c u - a • u c, we o ta1n 

Notice that ~ is not proportional to ~. i.e. there does not 

necessarily exist any number c with ~ - c~. So how is ~ 
obtained from ~ ? The map 
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is, in fact, simply a linear transformation, as is easily 

verified. That is, we have the equation 

li - I~ , 

where I (not to be confused with the identity matrix) is not a 

number, but rather a linear transformation. Comparing this with 

the two-dimensional formula h - Iw, we see that the linear 

transformation I takes the place of the moment of inertia. Thus, 

in three dimensions, the moment of inertia is no longer a scalar, 

but nor is it a vector---- rather, it becomes a linear transforma­

tion, which we call the moment of inertia transformation. 

This is an example of the second type of application of 

linear algebra in physics; here, the moment of inertia transfor­

mation is a basic physical quantity like angular velocity or 

angular momentum. It has not been irttroduced as a mere 

technical convenience. 

For a continuous distribution of matter, we replace the L by 

f and obtain 

~ ? f ? 2 ? f? ? ? li - Iw ( r dm) w - (r • w) r dm. 

By letting I act on i, j, k we can work out the matrix of I 

with respect to the i j k basis. Setting t- xi+ yj + zk as 

usual, we find, for example 

Ii 
2 2 2 <J<x + y + z )dm) i- J(x)(xi + yj + zk)dm 

J<y
2 

+ z
2

)dm i - J xy dm j - f xz dm k 
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Proceeding in this way, we find that the matrix of I in the i j k 

basis must be 

I 
J<y2 + z2)dm 

-J xy dm 

-J xz dm 

-J xy dx 

J<x
2 

+ z
2

)dm 

-J yz dm 

-J xz dm 

-J yz dm 

J<x2 + y2)dm 

Thus, I can be computed given the shape and mass distribution of 

the body. 

Notice that the matrix of I is symmetric, that is, equal to 

its own transpose. This is of great importance when we consider 

the eigenvalue problem for I, to which we now turn. 

Since I has a symmetric 3x3 matrix, we can find 3 orthogonal 

eigenvectors with corresponding eigenvalues I 1 , I 2 , I 3 . When 

'-- [ I
1 

0 0 l referred to the eigenvector basis, I has matrix 0 I 0 

0 o
2 

I3 

What is the physical meaning of these eigenvectors and 

eigenvalues - if any? Suppose we set the body spinning about the 

first eigenvector. Since~ points in the direction of the axis 
~ of rotation, this means that we are taking w to be the first 

eigenvector. 

Thus we have the eigenvalue equation 

~ ~ ~ ~ But li = Iw, soli= I
1

w. Taking the magnitude of these vectors, 

we first 1li1 II
1

1 1~1. Comparing this with the two-dimensional 

equation h = Iw, wee see that in fact I
1 

is simply the ordinary 
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(scalar) moment of inertia about the directiion of the first 

eigenvector. Similarly for I 2 and I 3 : the physical meaning of 

the eigenvalues is that they are the moments of inertia about 

axes parallel to the eigenvectors. 

But what of the eigenvectors themselves? Suppose no torque 

acts on the body. Then, by the conservation of angular momentum, 
~ ~ 
li, the direction of w is constant. This means that the object is 

rotating steadily about a fixed axis in space, and not tumbling 

around as it usually does. Thus, the physical meaning of the 

eigenvectors of I is that they give the directions in the body 

about which steady rotation (without tumbling) is possible. 

Instuitively, the reason for this is that the eigenvectors point 

along any axes of symmetry in the body. 

V. The Euler Equations 

Let us adopt a basis of orthonormal eigenvectors of I. 

Since it is possible for the body to rotate steadily about them, 

they must be fixed in the body like the vectors t, ~. ~ discussed 

t ~ ~ in section III. Hence we shall take , m, n to be unit 
~ eigenvectors of I. Let w1 , w2 , w3 be the components of w with 
~ respect to this basis. Then the angular momentum vector li can be 

written as 

h - Iw I(w1t + ~ ~ w2m + w3n) 

w1It + ~ ~ w2Im + w3In (linearly) 

- w1I 1t + ~ 
C..'2I2m 

~ + w3I 3n (eigenvectors). 
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Now suppose that no external torques act. Then by the 

conservation of angular momentum, 

since 11 , 12 , 13 are constants. (They are moments of inertia of 

a rigid body about definite axes.) Of course, w
1

, w2 , w3 will 

t ~ ~ not usually be constants, and nor are , m, n, because they are 

rotating with the body and are therefore functions of time. But 

by our general formula 

we have 

So 

~ 
-w 

~ dit ~ ~ 
x m, dt - w x n 

But ~ x t = (w
1
t + w2~ + w

3
'It) x t, which we can work out by using 

t x t = 0,- t x ~ =-It, ~ x It - t, It x t - ~ ( by analogy with 

ixi = 0, i X j - k, j X k- i, k X i - j). So we get 

~ xt ~ ~ 
w -w2n + w3m 

~ ~ ~ 
w

3
t w x m = w1n-

~ ~ 
w t- ~ 

w x n = 2 w1m 
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Substituting these into the above, we obtain 

which implies the three scalar equations 

0 -
dwl 

Il dt + I3w3w2 I2w2w3 

0 -
dw2 

I2 dt + Ilwlw3 I3w3wl 

These are the equations of motion of a rotating rigid body 

on which no external torques act. They are known as the Euler 

equations. 

VI. The Rotation of the Earth 

In any particular situation, we have to calculate I 1 , I 2 , I 3 
from the shape and mass distribution of the body in questions, 

and then substitute them into the Euler equations and solve for 
~ w1 , w2 , w3 . These will tell us w, that is, the axis or rotation, 

as a function of time. We now apply this to the rotation of the 

Earth. 

To a very good approximation, the Earth is an ellipsoid of 

revolution, being slightly flattened at the poles. If a and b 
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are the distances from the centre to the pole and to the equator 

respectively, then putting the polar axis along the z axis, we 

have 

as the equation of the surface of the Earth. For simplicity, we 

make the assumption that the Earth has constant density p. Of 

course, this is not a very good approximation, but we shall 

return to this later. We now have dm = p dV, where dV is the 

element of volume. The matrix of I now becomes 

I 
pfff<y2 

+ z
2

) dx dy dz, -pfff xy dx dy dz, -pfff xz dx dy dz 

-pfff xy dx dy dz, pfff (x
2 

+ z
2

) dx dy dz, -pfff yz dx dy dz 

-pfff xz dx dy dz, -pfff yz dx dy dz, pfff (x
2 

+ y
2

) dx dy dz 

Evaluating the triple integrals, we find that the matrix becomes 

(if M ~ mass of the Earth) 

0 

0 0 

0 

0 

~ Mb2 
5 

4 2 (Here we use the fact that the volume of the ellipsoid is 3 ~ab , 
4 2 

sop~ M/3 ~ab ). Hence we can read off the eigenvalues 
1 2 2 2 2 directly: they are 11 = 12 = 5 M (a +b), 13 =5Mb 

101 



Substituting into the Euler equations, we find 

dwl 13 - Il 
0 - dt + 1

1 
w2w3 

dw2 Il - 13 
0 - dt + 1

1 
wlw3 

dw3 
0 - dt 

13 - Il 
If we define K - --~---

11 
w

3
, then K is a constant (since 

b2 a2 
constant) which is given by K- ( 

2 2
)w

3
. This first 

b + a 

Euler equations become 

dwl 
dt - -Kw2 

dw2 
dt: - Kwl 

two 

Differentiating the first equation and using the second, we get 

which is the equation satisfied by c cos (Kt), where cis any 
dwl 

constant. Then from the first equation w2 - dt /K- c sin (Kt). 

Thus we find that 

w1 - c cos Kt, w2 - c sin Kt, w3 - constant. 

~2 Note that w wi + w; + w~ - c
2 

+ w~ which is cqnstant. 

The equations for w
1 

and w
2 

are the parametric equations of a 

circle. Thus we can imagine ~ as a vector of constant length 
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whose tip sweeps out a circle as time goes by. It will complete 

2~(a2 + b2) 
2 2 w

3
(b - a ) 

an entire circle in a time 2~/K - T. 

Now recall that the direction of ~ gives the instantaneous 

axis of rotation. Thus an observer fixed on the surface of the 

Earth should see the axis of rotation of the Earth moving in a 

circle about the symmetry axis. The period of this motion is 

given by the above formula for T. The polar diameter of the 

Earth is about 12,640 kilometres, and its equatorial diameter 

about 12,680 kilometres. Hence a- 6320, b- 6340, and w3 is, to 

a good approximation, the angular speed of the Earth, that is, 

2~/1 day. We find T ~ 306 days. 

Let us summarize. The rotational motion of the Earth is 

describe by is angular velocity vector ~. which is related to the 

angular momentum vector li by a linear transformation, li - I~. 
The conservation of angular momentum ~for a body on which no 

external torques act) leads us to the Euler equations, which can 

be solved for~ provided that we have the eigenvalu~s I 1 , I 2 , I 3 
of the linear transformation I. Applying this to the case of the 

Earth, we find that our theory predicts that the axis of rotation 

of the Earth should move in a circle around the geographical 

North pole with a period of about 300 days. We do not expect our 

numerical value to be very accurate, for the following reasons. 

(i) We assumed that the Earth has the same density p throughout. 

This is, of course, not correct : the Earth consists of several 

distinct layers, of different densities. However, the situation 

here is not as unsatisfactory as it may appear. Note that it is 

the ratio of the quanitites I
1 

and I 3 which enters into the 
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expression forT, so that it seems reasonable to expect some 

cancellation of the errors here. 

(ii) We assumed that no external torques act on the Earth. This 

is not actually valid, but it can be shown that this is a source 

of rather small errors. 

(iii) The most serious source of error, perhaps surprisingly, is 

the apsumption that the Earth is rigid. In fact, the Earth has a 

partly elastic interior, which allows it to dissipate energy 

through frictional losses, and to gain energy through (for 

example) earthquakes. 

These remarks do not mean that our discussion of the 

rotation of the Earth is of no value. Obviously the Earth is an 

extremely complicated system which we can only describe by 

starting with a simple model which we gradually improve. In 

fact, a small effect of the type predicted by our theory (i.e. a 

"wandering" of the axis of rotation about the North-South axis) 

has been observed. As expected, the actual period is not exactly 

300 days; it is closer to 400 days. In view of the 

approximations made, this is not a serious discrepancy. This 

motion is called the Earth's "Chandler wobble". The precise 

nature of the Chandler wobble is still being actively studied 

today; see the references below, or any textbook on geophysics. 

VII. Conclusion 

The Chandler wobble is one of the most important aspects of 

the Earth's rotation. Its study provides a very concrete 

application of linear algebra. Notice that if the angular 
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momentum vector li were simply proportional to ~. as it is in two 

dimensions, then there could be no Chandler wobble, because (by 

the conservation of angular momentum) li points in a fixed 
r 

direction. It is only because I is a linear transformation and 

not a number that it is possible for li and ~ to point in 
~ ~ completely different directions (R- Iw), and this is what makes 

the Chandler wobble possible. 

Thus we see that the viewpoint of linear algebra helps to 

clarify our understanding of this basic geophysical phenomenon. 
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